Maxsine

EP5s 系列

EtherCAT 总线

主轴驱动器

使用手册

(第1版)

驱动器 TH37/TH55/TH75/TH110/TH150

武汉迈信电气技术有限公司

声明

武汉迈信电气技术有限公司版权所有。

未经本公司的书面许可,严禁转载或复制本手册的部分或全部内容。

因改进等原因,产品的规格或尺寸如有变更,恕不另行通知。

安全注意事项

在产品存放、安装、配线、运行、检查或维修前,用户必需熟悉并遵守以下重要事项,以确保安全正确地使用本产品。

⚠ 危险 错误操作可能会引起危险并导致人身伤亡。⚠ 注意 错误操作可能会引起危险,导致人身伤害,并可能使设备损坏。

○禁止 严格禁止行为,否则会导致设备损坏或不能使用。

1. 使用场合

⚠危险

- 禁止将产品暴露在有水气、腐蚀性气体、可燃性气体的场合使用。否则会导致 触电或火灾。
- 禁止将产品用于阳光直射,灰尘、盐分及金属粉末较多的场所。
- 禁止将产品用于有水、油及药品滴落的场所。

2. 配线

⚠危险

- 请将接地端子可靠接地,接地不良可能会造成触电或火灾。
- 请勿将220V驱动器电源接入380V电源,否则会造成设备损坏及触电或火灾。
- 请勿将U、V、W电机输出端子连接到三相电源,否则会造成人员伤亡或火灾。
- 必须将U、V、W电机输出端子和驱动器接线端子U、V、W一一对应连接,否则电机可能超速飞车造成设备损失与人员伤亡。
- 请紧固电源和电机输出端子,否则可能造成火灾。
- 配线请参考线材选择配线,否则可能造成火灾。

3. 操作

⚠注意

- 当机械设备开始运转前,必须配合合适的参数设定值。若未调整到合适的设定值,可能会导致机械设备失去控制或发生故障。
- 开始运转前,请确认是否可以随时启动紧急开关停机。
- 请先在无负载情况下,测试主轴电机是否正常运行,之后再将负载接上,以避免 不必要的损失。
- 请勿频繁接通、关闭电源,否则会造成驱动器内部过热。

4. 运行

○禁止

- 当电机运转时,禁止接触任何旋转中的零件,否则会造成人员伤亡。
- 设备运行时,禁止触摸驱动器和电机,否则会造成触电或烫伤。
- 设备运行时,禁止移动连接电缆,否则会造成人员受伤或设备损坏。

5. 保养和检查

○禁止

- 禁止接触驱动器及其电机内部,否则会造成触电。
- 电源启动时,禁止拆卸驱动器面板,否则会造成触电。
- 电源关闭5分钟内,不得接触接线端子,否则残余高压可能会造成触电。
- 禁止在电源开启时改变配线,否则会造成触电。
- 禁止拆卸主轴电机,否则会造成触电。

6. 使用范围

⚠ 注意

本手册所涉及产品为一般工业用途,请勿用于可能直接危害人身安全的装置上,如核能装置、航天航空设备、生命保障及维持设备和各种安全设备。如有以上使用需要,请与本公司联系。

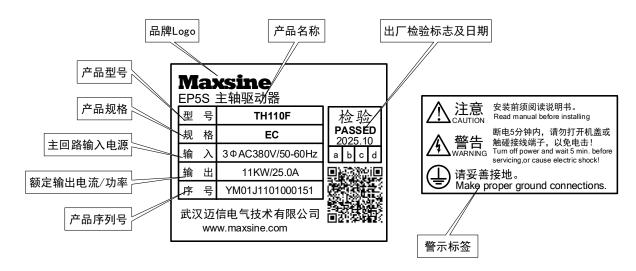
目录

第1章	产品检查及安装	1
1.1	产品检查	1
1.2	产品铭牌	1
1.3	产品前面板	2
1.4	主轴驱动器安装	3
	1.4.1 安装环境条件	3
	1.4.2 安装方法	3
1.5	主轴电机安装	4
	1.5.1 安装环境条件	4
	1.5.2 安装方法	
	电机旋转方向定义	
	接线	
2.1	系统组成与接线	6
	2.1.1 主轴驱动器接线图	
	2.1.2 接线说明	7
	2.1.3 电线规格	7
	2.1.4 强电端子说明	
	2.1.5 电机和电源接线图	
2.2	外部制动电阻的适配	9
2.3	X1 控制信号端子	9
	2.3.1 X1 端子插头	9
	2.3.2 X1 端子信号说明	
	2.3.3 X1 端子接口类型	
2.4	X2 编码器信号端子	13
	2.4.1 X2 端子插头	
	2.4.2 X2 端子信号说明	
2.5	X3 编码器信号端子	
	2.5.1 X3A、X3B 端子插头	
	2.5.2 X3 端子信号说明	
2.6	X5、X6 EtherCAT 网口	
	2.6.1 X5、X6 端子插座	
	2.6.2 X5、X6 端子信号说明	17
2.7	标准接线图	18
	2.7.1 控制接线	18
第3章	面板操作	19

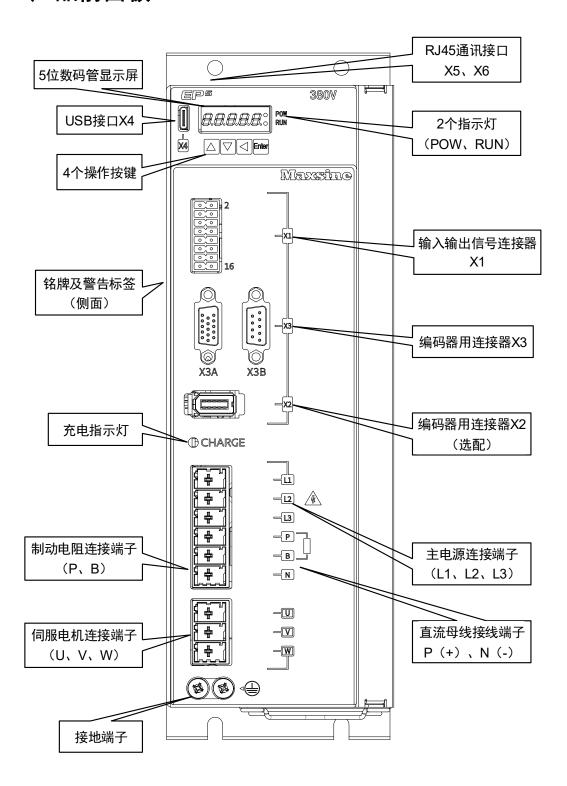
3.1	驱动器面板说明	19
	3.1.1 面板组成	19
	3.1.2 面板说明	19
	3.1.3 数值显示	20
3.2	主菜单	20
3.3	状态监视	21
3.4	参数设置	26
3.5	参数管理	27
3.6	辅助功能	
	3.6.1 特殊功能☆	28
3.7	参数缺省值恢复	29
	运行	
4.1	空载试运行	
	4.1.1 接线和检查	
	4.1.2 键盘调速试运行	31
4.2	位置控制	
	4.2.1 位置控制的参数设置	
	4.2.2 位置控制有关增益	32
4.3	速度控制	
	4.3.1 速度控制的参数设置	
	4.3.2 加减速	
	4.3.3 速度控制有关增益	
4.4	增益调整	
	4.4.1 增益参数	
	4.4.2 增益调整步骤	
4.5	共振抑制	
	4.5.1 低通滤波器	
	4.5.2 陷波器	
	4.5.3 自动陷波器	
	4.5.4 陷波器自动中频抑振	
4.6	绝对值编码器的设定	
	4.6.1 绝对值编码器多圈信息的保存	
	4.6.2 绝对值编码器的初始化	40
4.7	超程保护	41
4.8	转矩限制	
	4.8.1 转矩限制参数	
	4.8.2 转矩限制模式	42
4.9	工作时序	43
	4.9.1 电源接通时序	43
	4.9.2 驱动器 ON 时报警时序	43

	4.9.3 电机静止时的驱动器 ON/OFF 动作时序	44					
	4.9.4 电机运转时的驱动器 ON/OFF 动作时序	44					
4.1	0 电磁制动器	45					
	4.10.1 电磁制动器使用	45					
4.1	1 离线参数辨识功能	46					
	4.11.1 电气参数辨识	46					
	4.11.2 机械参数辨识	47					
4.1	2 主轴准停功能	47					
4.1	3 电机编码器和主轴编码器的选择	48					
	4.13.1 正余弦编码器的配置流程	48					
第5章	参数	49					
5.1	参数概览	49					
	5.1.1 0 段参数	49					
	5.1.2 1 段参数	51					
	5.1.3 2 段参数	53					
	5.1.4 3 段参数	55					
	5.1.5 6 段参数	55					
	5.1.6 7 段参数	55					
	5.1.7 8 段参数	58					
	5.1.8 10 段参数	58					
5.2	DI 功能一览表	60					
5.3	DO 功能一览表	60					
5.4	参数详解	61					
	5.4.1 0 段参数	61					
	5.4.2 1 段参数	74					
	5.4.3 2 段参数	86					
	5.4.4 3 段参数	101					
	5.4.5 6 段参数						
	5.4.6 7 段参数	102					
	5.4.7 8 段参数						
	5.4.8 10 段参数						
5.5	DI 功能详解	112					
	DO 功能详解						
	通讯功能114						
	常用对象说明						
6.2	EtherCAT 通信						
	6.2.1 CANopen over EtherCAT 的构造						
	6.2.2 EtherCAT 状态机						
	6.2.3 状态 LED						
	6.2.4 Data Type	120					

	6.2.5 PDO 映射	120
	6.2.6 根据 DC(Distributed Clock)的同步	122
6.3	驱动模式	123
	6.3.1 驱动器状态机	123
	6.3.2 控制字 6040h	125
	6.3.3 状态字 6041h	127
6.4	运行模式	
	6.4.1 周期同步位置模式	132
	6.4.2 周期同步速度模式	133
	6.4.3 周期同步转矩模式	134
	6.4.4 原点回归模式(hm mode)	135
6.5	模式共通功能	146
	6.5.1 Touch Probe 功能	146
	6.5.2 停机功能	152
	6.5.3 数字输入/数字输出	155
	6.5.4 位置信息	157
	6.5.5 操作 EEPROM 的对象	164
第7章	报警	165
7.1	报警一览表	165
	报警原因和处理	
	规格	
	驱动器型号	
	驱动器尺寸	
	电机尺寸	
	驱动器规格	
	电机适配表	
8.6	主轴电机接线	
	8.6.1 动力线接线	
	8.6.2 编码器接线	
	8.6.3 风扇电源线	194


第1章 产品检查及安装

1.1 产品检查

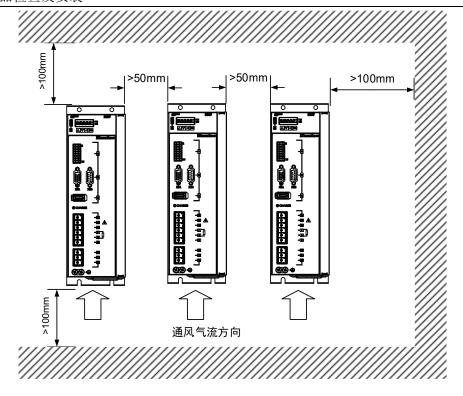

本产品在出厂前均做过完整功能测试,为防止产品运送过程中因疏忽导致产品不 正常,拆封后请详细检查下列事项:

- 检查主轴驱动器与主轴电机型号是否与订购的机型相同。
- 检查主轴驱动器与主轴电机外观有无损坏及刮伤现象。运送中造成损伤时,请勿 接线送电。
- 检查主轴驱动器与主轴电机有无零组件松脱之现象。是否有松脱的螺丝,是否螺丝未锁紧或脱落。
- 检查主轴电机转子轴是否能以手平顺旋转。带制动器的电机无法直接旋转。 如果上述各项有发生故障或不正常的现象,请立即与经销商联系。

1.2 产品铭牌

1.3 产品前面板

1.4 主轴驱动器安装


1.4.1 安装环境条件

主轴驱动器安装的环境对驱动器正常功能的发挥及其使用寿命有直接的影响,因此驱动器的安装环境必须符合下列条件:

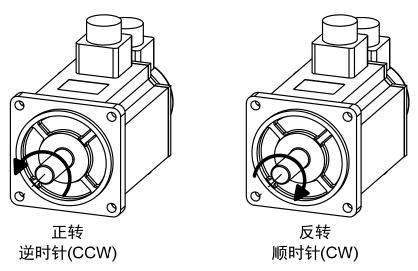
- 工作环境温度: 0℃~40℃; 工作环境湿度: 40%~80%以下(无结露)。
- 贮存环境温度: -40℃~50℃; 贮存环境湿度: 93%以下(无结露)。
- 振动: 0.5G以下。
- 防止雨水滴淋或潮湿环境。
- 避免直接日晒。
- 防止油雾、盐分侵蚀。
- 防止腐蚀性液体、瓦斯侵蚀。
- 防止粉尘、棉絮及金属细屑侵入。
- 远离放射性物质及可燃物。
- 数台驱动器安装于控制柜中时,请注意摆放位置需保留足够的空间,有利于空气流动帮助散热。请外加配置散热风扇,使主轴驱动器周围温度降低。长期安全工作温度在40℃以下。
- 附近有振动源时(例如冲床),若无法避免请使用振动吸收器或加装防振橡胶垫片。
- 附近有干扰设备时,对主轴驱动器的电源线和控制线有干扰,可能使驱动器产生 误动作。可以加入噪声滤波器以及其它各种抗干扰措施,保证驱动器的正常工作。 但噪声滤波器会增加漏电流,因此需在驱动器的电源输入端装上隔离变压器。

1.4.2 安装方法

- 主轴驱动器的正常安装方向是垂直直立方向,顶部朝上以利散热。
- 安装时,上紧主轴驱动器后部的 M5 固定螺丝。
- 主轴驱动器之间以及与其它设备间的安装间隔距离参考下图中所示,为了保证驱动器的使用性能和寿命,请尽可能地留有充分的安装间隔。
- 电气控制柜内必须安装散热风扇,保证有垂直方向的风对主轴驱动器的散热器散 热。
- 安装电气控制柜时,防止粉尘或铁屑进入主轴驱动器内部。

1.5 主轴电机安装

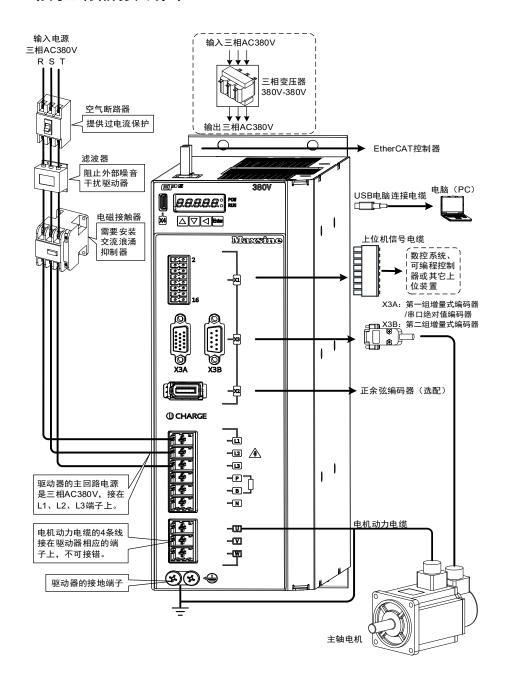
1.5.1 安装环境条件


- 工作环境温度: 0~40℃; 工作环境湿度: 80%以下(无结露)。
- 贮存环境温度: -40℃~50℃; 贮存环境湿度: 80%以下(无结露)。
- 振动: 0.5G以下。
- 通风良好、少湿气及灰尘的场所。
- 无腐蚀性、引火性气体、油气、切削液、切削粉、铁粉等环境。
- 无水汽及阳光直射的场所。

1.5.2 安装方法

- 水平安装:为避免水、油等液体自电机出线端流入电机内部,请将电缆出口置于下方。
- 垂直安装:若电机轴朝上安装且附有减速机时,须注意并防止减速机内的油渍经由电机轴渗入电机内部。
- 电机轴的伸出量需充分,若伸出量不足时将容易使电机运动时产生振动。
- 安装及拆卸电机时,请勿用榔头敲击电机,否则容易造成电机轴及编码器损坏。

1.6 电机旋转方向定义


本手册描述的电机旋转方向定义:面对电机轴伸,转动轴逆时针旋转(CCW)为正转,转动轴顺时针旋转(CW)为反转。

第2章 接线

2.1 系统组成与接线

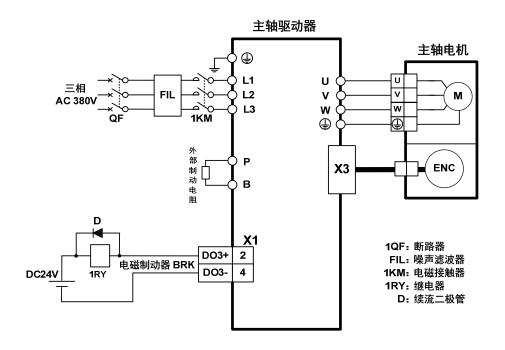
2.1.1 主轴驱动器接线图

2.1.2 接线说明

接线注意事项:

- 请依照电线规格使用。
- 电缆长度,指令电缆 3m 以内,编码器电缆 20m 以内。
- 检查 L1、L2、L3 的电源和接线是否正确。
- 电机输出 U、V、W 端子相序,必须和驱动器相应端子一一对应,接错电机可能不转或飞车。不能用调换三相端子的方法来使电机反转。
- 必须可靠接地,而且单点接地。
- 控制继电器线圈的输出,需安装保护用的二极管,二极管的方向要连接正确,否则会造成故障无法输出信号。
- 为了防止电磁噪声造成的错误动作,请在电源上加入隔离变压器及噪声滤波器等装置。
- 请将动力线(电源线、电机线等的强电回路)与信号线相距 30cm 以上来配线,不要放置在同一配线管内。
- 请安装非熔断型断路器使驱动器故障时能及时切断外部电源。

2.1.3 电线规格


连接端子	符号	电线规范	各
主电路电源	L1, L2, L3	$3.7 \text{kW} \sim 5.5 \text{kW}$	$2.5 \sim 4 \text{mm}^2$
土电时电你	LIN LZN L3	5.5kW~7.5kW	4~6mm ²
 电机连接端子	U、V、W	$3.7 \text{kW} \sim 5.5 \text{kW}$	$2.5 \sim 4 \text{mm}^2$
电机建按编 】	U, V, W	$5.5 \text{kW} \sim 7.5 \text{kW}$	4~6mm ²
接地端子	($1.5 \sim 4 \text{mm}^2$	
控制信号端子	X1	≥0.14mm²(AWG26),带原	军蔽线
编码器信号端子	X2、X3	≥0.14mm²(AWG26),带原	军蔽线
USB通讯端子	X4	TYPE-C接口数据线	
RJ45通讯端子	X5、X6	五类 (CAT 5) 或以上等	级的屏蔽网线
制动电阻端子	P, B	$1.5 \sim 4 \text{mm}^2$	

编码器电缆必须使用带屏蔽的双绞线。如果编码器电缆太长(>20m),会导致编码器供电不足,其电源和地线可采用多线连接或使用粗电线。

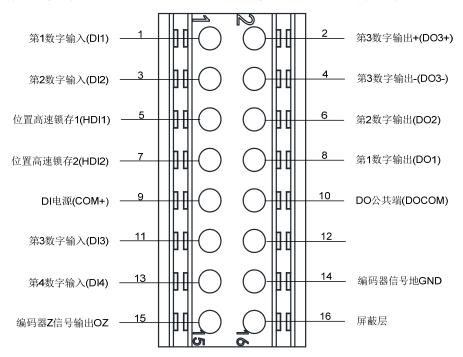
2.1.4 强电端子说明

名称	端子符号	详细说明
主电路电源端子	L1、L2、L3	连接外部交流电源: 三相 380VAC -15%~+10% 50/60Hz
制动电阻端子	P(+), B	制动电阻接线端子,用于连接外部制动电阻。
直流母线接线端子	P(+), N(-)	直流母线端子,用于多台驱动器共直流母线。
	U	输出到电机 U 相电源
电机连接端子	V	输出到电机 V 相电源
	W	输出到电机 W 相电源
接地端子	(1)	电机外壳接地端子
1女地圳 1	(驱动器接地端子

2.1.5 电机和电源接线图

2.2 外部制动电阻的适配

驱动器系列		最小允许制动电阻	制动电阻功率
	TH37	50Ω	1.0KW
	TH55	50Ω	1.0KW
AC380V	TH75	45Ω	1.5KW
	TH110	35Ω	2.0KW
	TH150	30Ω	3.0KW


2.3 X1 控制信号端子

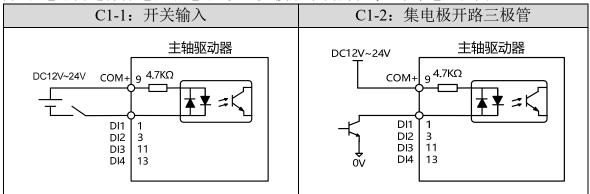
X1 控制信号端子提供与外部 IO 连接所需要的信号,使用 15EDGRHC-3.5-16P 插座,信号包括:

- 4个可编程输入;
- 3个可编程输出;
- 2路高速锁存输入。

2.3.1 X1 端子插头

X1 端子插头采用 15EDGKNH-3.5-16P 公头,外形和针脚分布为:

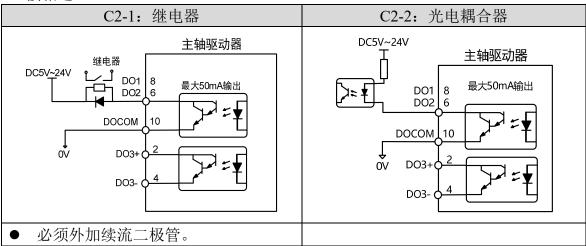
2.3.2 X1 端子信号说明

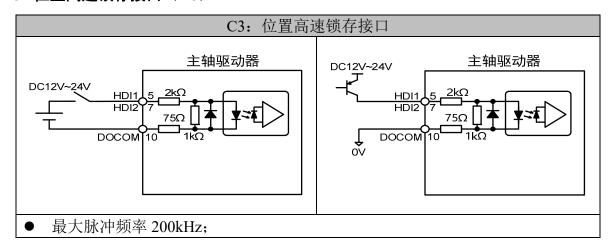

信号名称		针脚号	功能	接口
	DI1	1		
	DI2	3	光电隔离输入,功能可编程,由参数	
数字输入	DI3	11	P100~P103 定义。	C 1
	DI4	13		
	COM+	9	DI 电源(DC12V~24V)	
	DO1	8	 光 电 隔 离 输 出 , 最 大 输 出 能 力	
	DO2	6	九电隔离调出,最入调出能力 50mA/25V,功能可编程,由参数	
数字输出	DO3+	2	P130~P132 定义。	C2
	DO3-	4	[130-1132 足文。	
	DOCOM	10	DO 公共端	
し 位置高速锁存	HDI1	5	 高速光电隔离输入	C3
位且同处现行	HDI2	7	同述几电隔内棚/\	C3
编码器信号	OZ	15	编码器Z信号集电极开路输出	C4
差分输出	GND	14	编码器信号地	C4
屏蔽层	插头金 属外壳	16	连接屏蔽电缆的屏蔽线	

2.3.3 X1 端子接口类型

以下将介绍X1各接口电路,及与上位控制装置的接线方式。

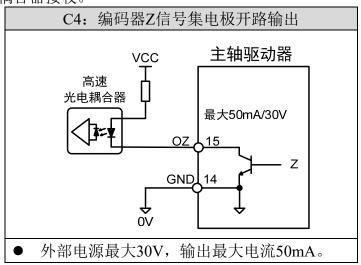
1. 数字输入接口(C1)


数字输入接口电路可由开关、继电器、集电极开路三极管、光电耦合器等进行控制。继电器需选择低电流继电器,以避免接触不良的现象。外部电压范围DC12V~24V。


2. 数字输出接口(C2)

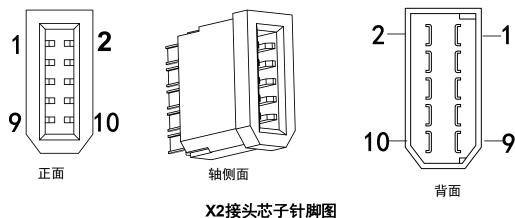
输出电路采用达林顿光电耦合器,可与继电器、光电耦合器连接,注意事项:

- 电源由用户提供,如果电源接反,会导致驱动器损坏。
- 外部电源最大 25V, 输出最大电流 50mA, 3 路电流总和不超过 100mA。
- 当使用继电器等电感性负载时,需加入二极管与电感性负载并联,若二极管的极性相反时,将导致驱动器损坏。
- 导通时,约有 1V 左右压降,不能满足 TTL 低电平要求,因此不能和 TTL 电路直接相连。



3. 位置高速锁存接口(C3)

4. 编码器信号集电极开路输出(C4)


将编码器Z信号通过集电极开路输出到上位控制器。由于编码器信号脉宽较窄,请使用高速光电耦合器接收。

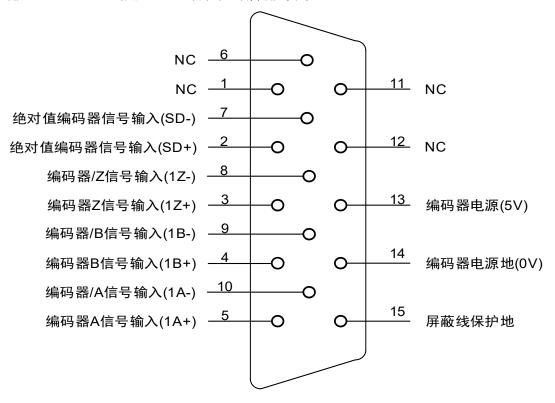
2.4 X2 编码器信号端子

2.4.1 X2 端子插头

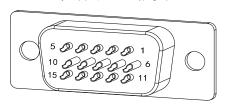
X2端子为正余弦编码器接口; 当使用正余弦编码器作为电机码盘时, 须将P090 改为3, 详见5.4章节。

7-12/0-17/0-1

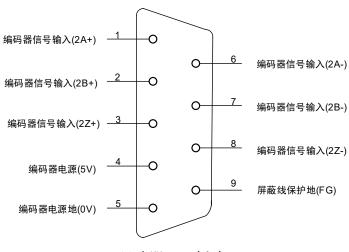
驱动器 X2 插头

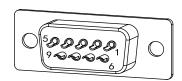

2.4.2 X2 端子信号说明

信号名称		针脚号	功能
/ch 77 88 45 MZ	5V	1	编码器用5V电源(由驱动器提供),电缆在
编码器电源	0V	2	20m以上时,为了防止编码器电压降低,电源和地线可采用多线连接或使用粗电线。
正余弦编码器	COS+	3	上工会站炉缸鬼烩山会改停具冻掉
余弦信号输入	COS-	4	与正余弦编码器输出余弦信号连接。
正余弦编码器	SIN+	5	与正余弦编码器输出正弦信号连接。
正弦信号输入	SIN-	6	一月止示15辆响备制山止151百万足15。
正余弦编码器	PZ+	7	上工会站绝和思绘山7相信是连接
Z相信号输入	PZ-	8	与正余弦编码器输出Z相信号连接。
屏蔽层	FG	金属壳	与信号电缆屏蔽线连接。


2.5 X3 编码器信号端子

2.5.1 X3A、X3B 端子插头


X3A 编码器信号端子支持 1 组增量式编码器 ABZ1 和一组串口绝对值编码器,使用 3 排 DB15(VGA 插座),外形和针脚排布为:


驱动器X3A插头

X3A 插头焊针分布图

驱动器X3B插头

X3B 插头焊针分布图

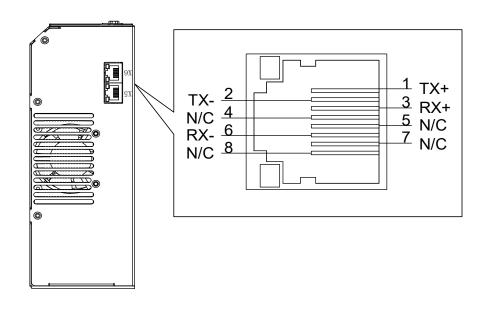
2.5.2 X3 端子信号说明

X3A: 第一组增量式编码器定义:

信号名称		针脚号	功能
	5V	13	编码器用 5V 电源(由驱动器提供),电缆
编码器电源	0V	14	在 20m 以上时,为了防止编码器电压降低, 电源和地线可采用多线连接或使用粗电线。
编码器 A 相输入	1A+	5	与编码器A相输出连接。
	1A-	10	与编码奋A相制出足按。
編码器 B 相输入	1B+	4	 与编码器B相输出连接。
编码的 D 相制八	1B-	9	与编码奋D相相由建按。
编码器Z相输入	1Z+	3	与编码器Z相输出连接。
##问 命 Z 作制八	1Z-	8	一分洲的命名作制山足1女。
屏蔽线保护地	FG	15	与信号电缆屏蔽线连接。

X3A: 串口绝对值编码器定义:

信号名称		针脚号	功能
编码器电源	5V	13	编码器用 5V 电源(由驱动器提供), 电缆在
	0V	14	20m 以上时,为了防止编码器电压降低,电源和地线可采用多线连接或使用粗电线。
信号输入	SD+	2	与绝对值编码器信号输出连接。
1百 5 棚八	SD-	7	与纪列恒编码备信与制出建按。
屏蔽线保护地	FG	15	与信号电缆屏蔽线连接。

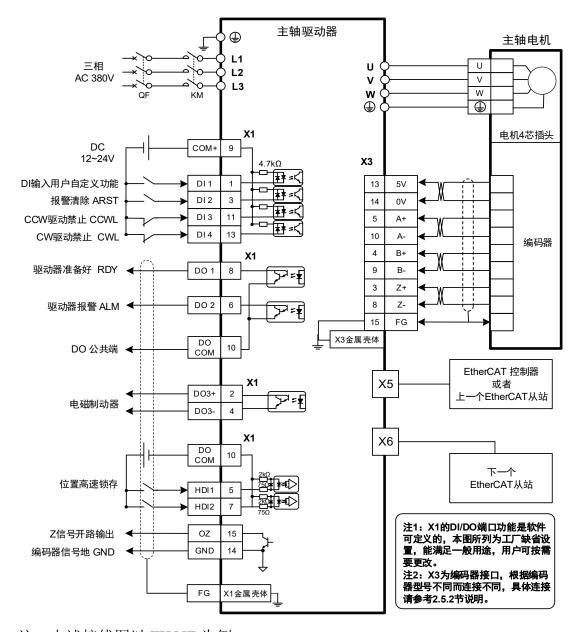

X3B: 第二组增量式编码器定义:

信号名称		针脚号	功能
	5V	4	编码器用 5V 电源(由驱动器提供), 电缆在
编码器电源	0V	5	20m 以上时,为了防止编码器电压降低,电源和地线可采用多线连接或使用粗电线。
编码器 A 相输入	2A+	1	与编码器A相输出连接。
	2A-	6	与無阿鉛A相相自足按。
编码器B相输入	2B+	2	与编码器B相输出连接。
5冊7号在 D 7日相/人	2B-	7	一J 洲 时 稻 D 竹 相 山 足 I 女。
编码器Z相输入	2Z+	3	与编码器Z相输出连接。
为州中国有6 Z 有目相1/1	2Z-	8	一分洲的命名作制 山土安。
屏蔽线保护地	FG	9	与信号电缆屏蔽线连接。

2.6 X5、X6 EtherCAT 网口

X5 为 EtherCAT 口输入,X6 为 EtherCAT 口输出,务必按要求连接,否则会导致通讯异常。

2.6.1 X5、X6 端子插座

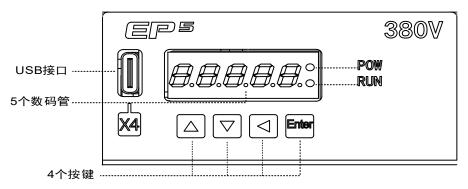


2.6.2 X5、X6 端子信号说明

信号名称	针脚号	功能
TX+	1	发信号+
TX-	2	发信号-
RX+	3	收信号+
RX-	6	收信号-

2.7 标准接线图

2.7.1 控制接线

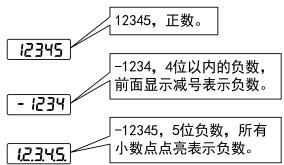

注:上述接线图以 TH55F 为例。

第3章 面板操作

3.1 驱动器面板说明

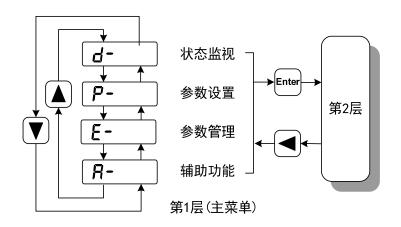
3.1.1 面板组成

面板由 5 个 LED 数码管显示器, 4 个按键 ▲、▼、■ 和 1 个 USB 接口组成, 用来显示系统各种状态设置参数等。操作是分层操作,由主菜单逐层展开。

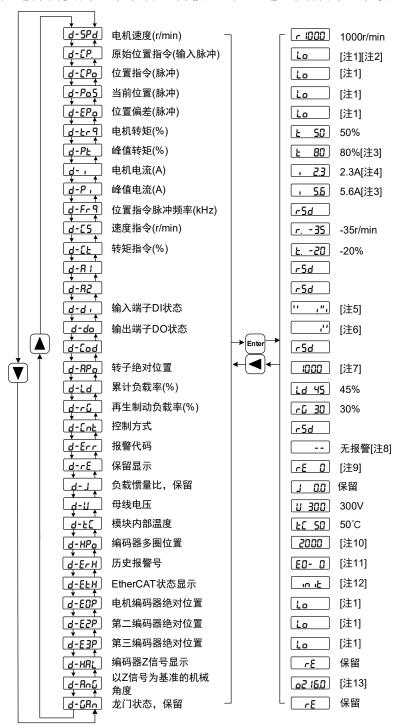


3.1.2 面板说明

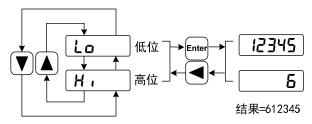
符号	名称	功能	
POW	主电源灯	点亮: 主电源已上电; 熄灭: 主电源未上电。	
RUN	运行灯	点亮: 电机通电运行中; 熄灭: 电机未通电运行。	
	增加键	增加序号或数值;长按具有重复效果。	
▼	减小键	减小序号或数值;长按具有重复效果。	
•	退出键	菜单退出;操作取消。	
Enter	确认键	菜单进入;操作确认。	
	USB 接口	设备与计算机连接的接口。	


3.1.3 数值显示

数值采用 5 个数码管显示器,数值前面显示减号表示负数,如果是 5 位负数,则 所有小数点点亮表示负数。有些显示项目前有前缀字符,如果数值位数太长需占用前 缀字符的位置,则前缀字符不会显示,只显示数值。


3.2 主菜单

第1层是主菜单,共有4种操作方式,用 ▲、▼ 键改变方式,按 彎 键进入第2层,执行具体操作,按 ● 键从第2层退回主菜单。


3.3 状态监视

在主菜单下选择状态监视 "d-",按 [™] 键进入监视方式。有多种监视项目,用户用 ▲、▼ 键选择需要的显示项目,再按 [™] 键,进入具体的显示状态。

1. 32 位二进制数值显示[注 1]

32 位二进制数范围是-2147483648~2147483647,采用低位和高位组合表示,通过菜单选择低位和高位,用图中公式合成完整数值。

32位数值=高位数值×65536+低位数值

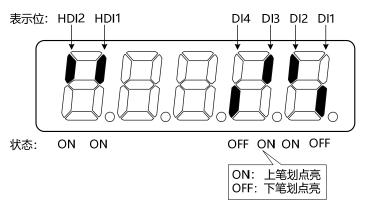
2. 位置单位[注 2]

原始位置指令的脉冲是指输入的脉冲个数,未经过电子齿轮变换。

其他的项目的脉冲(位置指令,当前位置,位置偏差,转子绝对位置)是统一脉冲单位。

统一脉冲单位表示编码器旋转一周,脉冲数增加 65536, 驱动器面板显示,以及 驱动器的上位机软件均采用此单位。

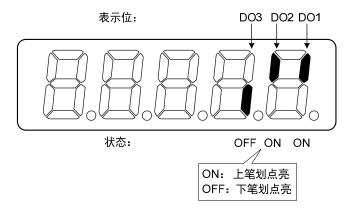
3. 峰值转矩和峰值电流[注 3]


过去10秒内电机的最大转矩和最大相电流有效值。

4. 电机电流[注 4]

电机相电流有效值。

5. 输入端子 DI[注 5]


数码管的竖线表示一位的状态,竖线上笔划点亮表示 ON,下笔划点亮表示 OFF。

22

6. 输出端子 DO[注 6]

数码管的竖线表示一位的状态,竖线上笔划点亮表示 ON,下笔划点亮表示 OFF。

7. 转子绝对位置[注 7]

表示转子在一转中相对定子所处的位置,以一转为一个周期,统一脉冲单位,以编码器 Z 脉冲为原点。其范围是 0~65535, Z 脉冲出现时数值为 0。

8. 报警代码[注 8]

无报警显示两减号。有报警时显示报警号,并按亮 0.3s 灭 0.3s 的周期闪烁;有警告时显示警告号,并按亮 1.8s 灭 0.6s 的周期闪烁。报警或者警告出现时,显示器会自动进入状态监视并显示报警号或者警告号,但可以通过键盘进行其他操作,当其不处于监视状态时,则最右边数码管的小数点按照报警或者警告的亮灭周期闪烁表示有报警或者警告存在。

9. RE 保留显示[注 9]

(1) re-0 菜单下显示软件版本的日期信息:

第1个数码管显示年的最后一位,如:2023显示3,2024显示4,依此类推:

第 2 个数码管显示月份(注意: 10 月用 "A"表示, 11 月用 "b"表示, 12 月用 "c"表示);

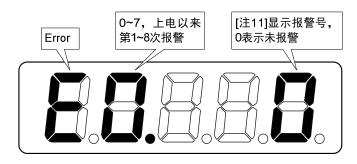
第 3-4 个数码管显示天;

第5个数码管厂家保留显示,一般为内控版本序号。

例如,以上图标表示为: 2024年10月31日,内控版本1。

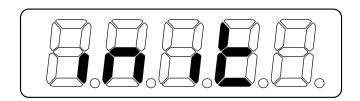
10. 编码器多圈位置[注 10]

此状态显示仅绝对值式驱动器有效。记录编码器的多圈位置,其范围是 $0\sim65535$,配合 RP_0 转子单圈绝对位置,可以得出转子的绝对位置:

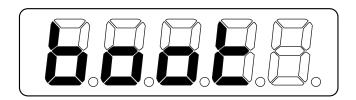

绝对位置=多圈位置×216+单圈位置

例如:多圈位置显示 2000,单圈位置显示 1000,均为 10 进制数则编码器的绝对位置为(2000× 2^{16} +1000)(10 进制)=131073000

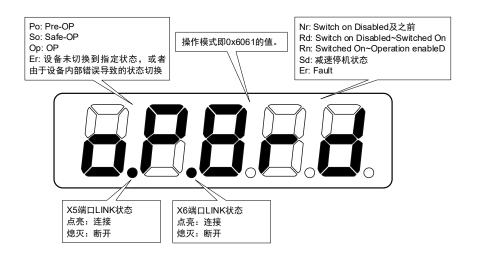
当绝对值编码器设置为单圈模式时(P090=0),多圈位置显示为 0,并不随转子的位置变化。


11. 历史报警号[注 11]

显示报警号,可用 ▲、▼键查看历史报警号。驱动器断电重启后,只记录 E0~E3的前 4 次报警号。



12. EtherCAT 状态显示[注 12]

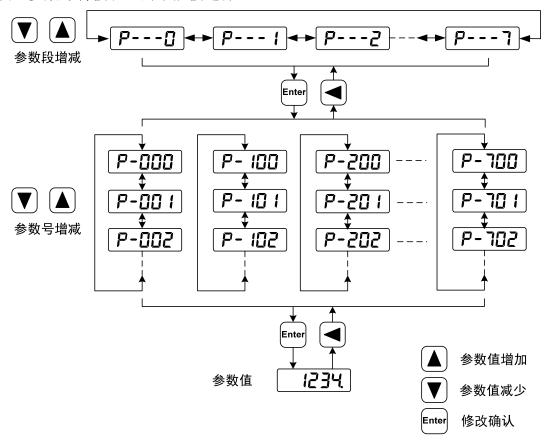

(1) EtherCAT 网络状态为 Init 时,显示:

(2) EtherCAT 网络状态为 boot 时,显示:

(3) 其他 EtherCAT 网络状态时,显示:

13. 以 Z 信号为基准的机械角度[注 13]

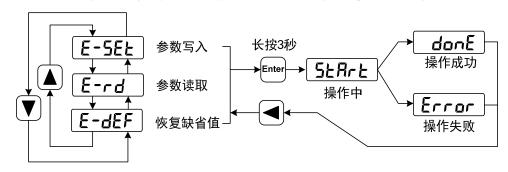
以 Z 信号为基准的 360 度角度显示,显示范围为 0~360°。


3.4 参数设置

参数采用参数段+参数号表示,百位数是段号,十位和个位是参数号。例如参数 P102,段号是"1",参数号是"02",显示器显示为"P-102"。

在主菜单下选择参数设置"**P**-",按 ^{□□} 键进入参数设置方式。首先用 ▲、▼ 键选择参数段,选中后,按 ^{□□} 键,进入该段参数号选择。其次再用 ▲、▼ 键选择参数号,选中后,按 ^{□□} 键显示参数值。

用 ▲、▼ 键修改参数值。按 ▲ 或 ▼ 键一次,参数增加或减少 1,按下并保持 ▲ 或 ▼ 键,参数能连续增加或减少。参数值被修改时,最右边的 LED 数码管小数点点亮,按 懂 键确定修改数值有效,此时右边的 LED 数码管小数点熄灭,修改后的数值将立刻反映到控制中(部分参数需要保存后重新上电才能起作用)。此后还可以继续修改参数,修改完毕按 ■ 键退回到参数号选择状态。如果对正在修改的数值不满意,不要按 懂 键确定,可按 ■ 键取消,参数恢复原值。


修改后的参数并未保存到 EEPROM 中,若需要永久保存,请使用参数管理中的参数写入操作,并且确保写入操作完成。参数段、参数号不一定是连续的,未使用的参数段、参数号将被跳过而不能被选择。

3.5 参数管理

参数管理主要处理参数表与 EEPROM 之间操作,在主菜单下选择参数管理 "E-",按 键进入参数管理方式。

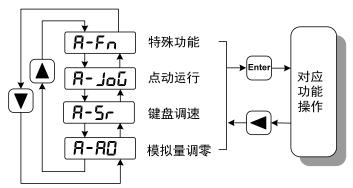
选择操作模式,共有3种模式,用▲、▼键来选择。选中操作后按下 懂 键并保持3秒以上,激活操作。完毕后再可按 ● 键退回到操作模式选择状态。

● 参数写入

表示将参数表中的参数写入 EEPROM。用户修改了参数,仅使参数表中参数值改变了,下次上电又会恢复成原来的数值。如果想永久改变参数值,就需要执行参数写入操作,将参数表中参数写入到 EEPROM 中,以后上电就会使用修改后的参数。

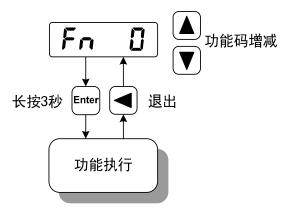
● 参数读取

表示将 EEPROM 中的数据读到参数表中。这个过程在上电时会自动执行一次, 开始时,参数表的参数值与 EEPROM 中是一样的。但用户修改了参数,就会改变参 数表中参数值,当用户对修改后的参数不满意或参数被调乱时,执行参数读取操作, 可将 EEPROM 中数据再次读到参数表中,恢复成刚上电的参数。


● 恢复缺省值

表示将所有参数的缺省值(出厂值)读到参数表中,并写入到 EEPROM 中,下次上电将使用缺省参数。当用户将参数调乱,无法正常工作时,使用这个操作,可将所有参数恢复成出厂状态。因为不同的驱动器型号和电机型号对应的参数缺省值不同,在使用恢复缺省参数时,必须先保证电机代码(参数 P002)的正确性。

E-5EL 参数写入: 参数表 ☐ EEPROM **E-rd** 参数读取: 参数表 ☐ EEPROM **E-dEF** 恢复缺省值:出厂缺省值 ☐ 参数表、EEPROM


3.6 辅助功能

在主菜单下选择辅助功能 "R- ",按 键进入辅助功能方式。用 ▲、▼ 键 选择操作模式。选中操作后按下 键进入对应功能,完毕后按 ● 键退回到操作模式 选择状态。

3.6.1 特殊功能☆

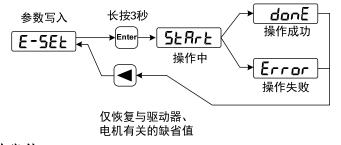
选择特殊功能,并按 ➡ 键进入。用 ▲、▼ 键设置功能码,按下 ➡ 键并保持 3 秒以上,激活操作。完毕后再可按 ➡ 键退出。**注意: Fn 功能,要在驱动器未使能状态下执行。**

Fn 编号	功能	说明
Fn36	编码器复位(多圈绝 对值编码器有效)	编码器 RESET 指令,用于编码器初始化,编码器报警复位,以及多圈信息归零。更换电池后,需执行此功能。
Fn37	编码器报警清除	编码器报警清除指令,用于编码器各种报警清除。执行此命令,不会清除编码器多圈信息。 更换电池后,需执行此功能。
Fn -2	进入普通模式	界面显示 999 号警告,功能可正常运行
Fn -1	退出普通模式	退出普通模式,进入联网模式

Fn编号	功能	说明
Fn 6	电机电气参数辨识	用于辨识电机电气参数,详见 4.11 章节。
Fn 1	负载机械参数辨识	用于辨识负载惯量,详见 4.12 章节。

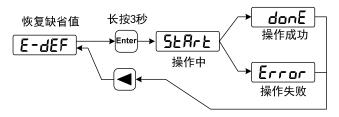
3.7 参数缺省值恢复

在发生以下情况时,请使用恢复缺省参数(出厂参数)功能:


- 参数被调乱,系统无法正常工作。
- 更换电机,新换电机与原配电机型号不同。
- 其他原因造成电机代码(参数 P002)不匹配。

恢复全部参数缺省值的步骤如下:

- 1. 检查电机代码(参数 P002)是否正确。若正确,执行步骤 4,若不正确,执行下面步骤。
- 2. 修改密码(参数 P000)为 385。
- 3. 修改电机代码(参数 P002)为需要的电机代码,电机代码参见 8.5 章节电机适配表。
- 4. 进入参数管理,执行以下两种操作之一:


(1) 恢复部分参数缺省值

仅恢复与驱动器、电机相关的缺省参数,保留其他用户参数。执行参数管理中参数写入操作,本操作只有在密码为 360、且修改了电机代码时才具有恢复缺省值功能,其他情况下,只有参数写入功能。

(2) 恢复全部参数缺省值

恢复所有参数为缺省值,用户修改过的参数也被恢复到出厂缺省值。执行参数管理中恢复缺省值操作。

恢复所有参数的缺省值

5. 关电源,再次上电,即可工作。

第4章 运行

4.1 空载试运行

试运行的目的是确认以下事项是否正确:

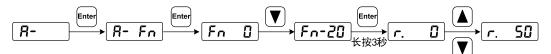
- 驱动器电源配线;
- 主轴电机动力线配线:
- 编码器配线;
- 主轴电机运转方向和速度。

4.1.1 接线和检查

在通电之前,确认电机:

- 电机空载,电机轴上不要加负载,已经安装在机械上也请脱开连接器。
- 由于电机加减速有冲击,必须固定电机。

在通电之前先检查以下几项:


- 连线是否正确?尤其是驱动器 U、V、W 是否与电机 U、V、W 接线一一对应,驱动器 L1、L2、L3 接线是否正确?
- 输入电压是否正确?
- 编码器电缆连接是否正确?

4.1.2 键盘调速试运行

注意:键盘调速试运行,需要设置 A-Fn→Fn -2 进入普通模式,才可以运行! Fn -2 长按时,驱动器显示"AL999"的 999 号警告,可以正常运行。

在驱动器未使能的状态下,长按 Fn-2,面板显示"done"之后,驱动器切换为普通模式,可用于键盘调速试运行等功能;在驱动器未使能的状态下,长按 Fn-1,面板显示"done"之后,驱动器切换到 EtherCAT 模式,控制方式及指令均来源于 EtherCAT 总线。

- 1. 在执行该操作前,确认电机已脱开负载。
- 2. 接通电源(交流三相 380V),驱动器的显示器点亮,POWER 指示灯点亮,如果有报警出现,请检查连线。
- 3. 确认没有报警和异常的情况后,长按 Fn-2 出现"AL999"时,按下图执行以下操作:

用 ▲、▼ 键改变速度指令,电机按给定的速度运行。正数表示正转(CCW),负数表示反转(CW),最小给定速度是 0.1r/min。

注意: Fn 功能执行完成后,不能进行 E-SET 保存操作,必须断电重启,否则导致 Fn 的状态保存。

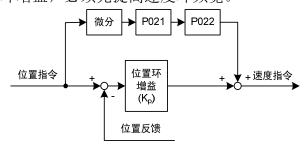
4.2 位置控制

参见"6.4.1 周期同步位置模式"部分说明。

主轴电机的位置模式,主要是用在定位定向和刚性攻丝功能等,如加工中心的换刀,攻牙等。

4.2.1 位置控制的参数设置

参数设置:


参数	名称	设置值	缺省值	参数说明
P097	忽略驱动禁止	3	3	使用正转驱动禁止(CCWL)和反 转动禁止(CWL)。若设置为忽略, 可不连接 CCWL、CWL。

4.2.2 位置控制有关增益

参数	名称	参数范围	缺省值	单位
P009	第1位置环增益	1~1000	25	1/s
P021	位置环前馈增益	0~100	0	%
P022	位置环前馈滤波时间常数	$0.20{\sim}50.00$	1.00	ms

因为位置环包括速度环,依照先内环后外环次序,首先设置好负载转动惯量比, 再调整速度环增益、速度环积分时间常数,最后调整位置环增益。

以下是系统的位置控制器,位置环增益 K_p增加可提高位置环频宽,但受速度环频宽限制。欲提高位置环增益,必须先提高速度环频宽。

前馈能降低位置环控制的相位滞后,可减小位置控制时的位置跟踪误差以及更短

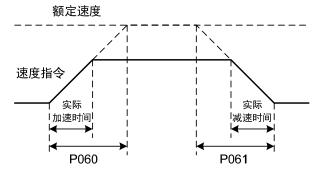
的定位时间。前馈量增大,位置控制跟踪误差减小,但过大会使系统不稳定、超调。若电子齿轮比大于 10 也容易产生噪声。一般应用可设置 P021 为 0%,需要高响应、低跟踪误差时,可适当增加,不宜超过 80%,同时可能需要调整位置环前馈滤波时间常数(参数 P022)。

4.3 速度控制

参见"6.4.2 周期同步速度模式"部分说明。

4.3.1 速度控制的参数设置

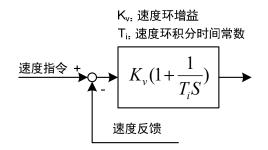
参数设置:


参数	名称	设置值	缺省值	参数说明
P060	速度指令加速时间	合适	500	
P061	速度指令减速时间	合适	1000	
P097	忽略驱动禁止	3	3	使用正转驱动禁止(CCWL)和 反转驱动禁止(CWL)。若设 置为忽略,可不连接 CCWL、 CWL。

4.3.2 加减速

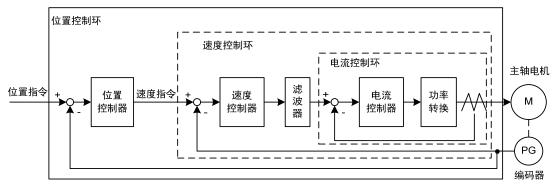
加减速与以下参数有关:

参数	名称	参数范围	缺省值	单位
P060	速度指令加速时间	0~30000	500	ms
P061	速度指令减速时间	0~30000	1000	ms


加减速能减缓速度的突变,使电机运行平稳。如下图所示,参数 P060 设置电机 从零速到额定速度的加速时间,P061 设置电机从额定速度到零速的减速时间。如果指 令速度比额定速度低,则需要的加速、减速时间也相应缩短。如果驱动器工作在速度 模式,由上位机(PLC 等)执行位置闭环控制,参数应设置为 0。

4.3.3 速度控制有关增益

参数	名称	参数范围	缺省值	单位
P005	第1速度环增益	1~3000	40	Hz
P006	第1速度环积分时间常数	1.0~1000.0	50.0	ms
P017	负载转动惯量比	0.0~200.0	1.0	倍
P018	速度环 PDFF 控制系数	0~100	100	%


首先设置好负载转动惯量比,再调整速度环增益、速度环积分时间常数。以下是系统的速度控制器,增加速度环增益 K_v 可提高速度的响应频宽,减小速度环积分时间常数 T_i ,可以增加系统刚性,减小稳态误差。

P018 可选择速度控制器结构,0 为 IP 调节器,100 为 PI 调节器, $1\sim99$ 为 PDFF 调节器。P018 参数值偏大则系统具有高频率响应,参数值偏小则系统具有高刚度(抵抗偏差能力),中等数值兼顾频率响应和刚度。

4.4 增益调整

驱动器包括电流控制环、速度控制环和位置控制环三个控制回路。控制框图如下:

理论上,内层的控制回路频宽一定要高于外层,否则整个控制系统会不稳定而造成振动或是响应不佳,因此这三个控制回路频宽的关系如下:

电流环频宽>速度环频宽>位置环频宽

由于驱动器已经调整好电流控制环为最佳状态,用户只需调整速度控制环和位置控制环参数。

4.4.1 增益参数

和增益有关的参数是:

参数	名称	参数范围	缺省值	单位
P005	第1速度环增益	1~3000	40	Hz
P006	第1速度环积分时间常数	1.0~1000.0	50.0	ms
P009	第1位置环增益	1~1000	25	1/s
P017	负载转动惯量比	0.0~200.0	1.0	倍

符号定义如下:

Kv: 速度环增益:

Ti: 速度环积分时间常数:

Kn: 位置环增益;

G: 负载转动惯量比(P017);

J₁: 折算到电机轴的负载转动惯量:

JM: 电机转子转动惯量。

1. 速度环增益 K_V

速度环增益 K_v直接决定速度环的响应频宽。在机械系统不产生振动或是噪音的前提下,增大速度环增益值,则速度响应会加快,对速度命令的跟随性越佳。但是过大的设定容易引起机械共振。速度环频宽表示为:

速度环频宽(
$$Hz$$
) = $\frac{1+G}{1+I_1/I_M} \times K_{\nu}(Hz)$

如果负载转动惯量比 G 设置正确($G=J_L/J_M$),则速度环频宽就等于速度环增益 K_v 。

2. 速度环积分时间常数 Ti

速度环积分可有效的消除速度稳态误差,快速反应细微的速度变化。在机械系统不产生振动或是噪音的前提下,减小速度环积分时间常数 T_i ,以增加系统刚性,降低稳态误差。如果负载惯量比很大或机械系统存在共振因素,必须确认速度回路积分时间常数够大,否则机械系统容易产生共振。如果负载转动惯量比 G 设置正确($G=J_L/J_M$),利用以下公式得到速度环积分时间常数 T_i :

$$T_i(ms) \ge \frac{4000}{2\pi \times K_V(Hz)}$$

3. 位置环增益 Kp

位置环增益直接决定位置环的反应速度。在机械系统不产生振动或是噪音的前提下,增加位置环增益值,以加快反应速度,减小位置跟踪误差,缩短定位时间。但过 大设定会造成机械系统抖动或定位超调。位置环频宽不可高于速度环频宽,一般:

位置环频宽
$$(Hz) \le \frac{速度环频宽 (Hz)}{4}$$

如果负载转动惯量比 G 设置正确($G=J_L/J_M$),则位置环增益 K_p 计算如下:

$$K_p(1/s) \le 2\pi \times \frac{K_{\nu}(Hz)}{4}$$

4.4.2 增益调整步骤

位置和速度频宽的选择必须由机械的刚性和应用场合决定,由皮带连接的输送机械刚性低,可设置为较低频宽;由减速器带动的滚珠丝杆的机械刚度中等,可设置为中等频宽;直接驱动滚珠丝杆或直线电机刚度高,可设置为高频宽。如果机械特性未知,可逐步加大增益以提高频宽直到共振,再调低增益即可。

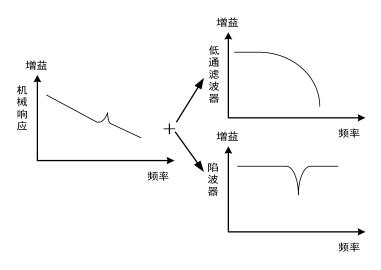
在驱动器增益中,如果改变一个参数,则其它参数也需要重新调整。请不要只对某一个参数进行较大的更改。关于驱动器参数的更改步骤,一般请遵守以下原则:

提高响应	降低响应,抑制振动和超调
1.提高速度环增益K _v	1.降低位置环增益K _p
2.减小速度环积分时间常数Ti	2.增大速度环积分时间常数Ti
3.提高位置环增益K _p	3.降低速度环增益Kv

速度控制的增益调整步骤:

- 1. 设定负载转动惯量比。
- 2. 设定速度环积分时间常数为较大值。
- 3. 速度环增益在不产生振动和异常声音的范围内调大,如果发生振动稍许调小。
- 4. 速度环积分时间常数在不产生振动的范围内调小,如果发生振动稍许调大。
- 5. 如果因机械系统发生共振等原因而无法调大增益,不能得到希望的响应性时,对 转矩低通滤波器或陷波器调整抑制共振后,然后重新进行以上步骤操作以提高响 应性。首先使用转矩低通滤波器,若效果不好再考虑使用陷波器。请参考 4.6 章节。

位置控制的增益调整步骤:


- 1. 设定负载转动惯量比。
- 2. 设定速度环积分时间常数为较大值。
- 3. 速度环增益在不产生振动和异常声音的范围内调大,如果发生振动稍许调小。
- 4. 速度环积分时间常数在不产生振动的范围内调小,如果发生振动稍许调大。
- 5. 增大位置环增益,如果发生振动稍许调小。
- 6. 如果因机械系统发生共振等原因而无法调大增益,不能得到希望的响应性时,对 转矩低通滤波器或陷波器调整抑制共振后,然后重新进行以上步骤操作以提高响 应性。首先使用转矩低通滤波器,若效果不好再考虑使用陷波器。请参考 4.6 章节。
- 7. 若需要更短的定位时间和更小的位置跟踪误差,可适当调整位置前馈。

4.5 共振抑制

当机械系统发生共振现象,可能是驱动器刚度过大、响应过快造成,降低增益或许可以改善。驱动器提供低通滤波器和陷波器,在不改变增益情况下,达到抑制共振的效果。共振抑制有关的参数如下:

参数	名称	参数范围	缺省值	单位
P007	第1转矩滤波时间常数	0.00~50.00	1.00	ms
P200	第1共振陷波器频率	50~5000	5000	Hz
P201	第1共振陷波器品质因数	1~100	7	
P202	第1共振陷波器深度	0~60	0	dB
P203	第2共振陷波器频率	50~5000	5000	Hz
P204	第2共振陷波器品质因数	1~100	7	
P205	第2共振陷波器深度	0~60	0	dB

共振抑制的原理是采用滤波器抑制机械响应的共振峰,示意图如下:

两种滤波器的特点是:

滤波器种类	适合场合	优点	缺点
低通滤波器	高频共振	不需要知道	带来相位滞后,系统频带降低。不适
队地秘权的	同妙光派	准确共振频率	合中低频共振场合。
陷波器	中低频共振	不影响整 体系统频宽	必须知道准确共振频率,频率设置有 误反而影响性能。共振频率经常漂移 场合不适合。

4.5.1 低通滤波器

由参数P007设置。低通滤波器默认是有效的。低通滤波器对高频有很好的衰减,能较好抑制高频共振、噪声。例如使用滚珠丝杠机械,提高驱动器增益时,有时会发生高频共振,使用低通滤波器有较好效果。但系统响应频宽和相位裕度也降低了,系统有可能变得不稳定。如果系统是中低频共振,低通滤波器无法抑制。

因主轴驱动而导致机器高频振动时,对转矩滤波器时间常数 T_f 进行调整。这样可能会消除振动。数值越小,越能进行响应性良好的控制,但受机械条件的限制;数值越大,越能抑制高频振动,太大则会造成相位裕度减小,引起振荡。如果负载转动惯量比G设置正确(G= J_L/J_M),需满足:

$$T_f(ms) \le \frac{1000}{2\pi \times 2 \times K_v(Hz)}$$

4.5.2 陷波器

由参数P200~P205设置,两个陷波器可同时使用,能抑制两种不同的频率共振。 默认两个陷波器都是关闭的。如果可以知道共振频率,那么陷波器可以直接将共振量 消除。通常如果确定共振频率,使用陷波器比低通滤波器效果好。共振频率不明时, 可以按从高到低的顺序逐渐降低抑制频率,振动最小点的抑制频率就是最优设定值。 但如果共振频率随时间或其他因素偏移,而且偏移过大时,就不适合使用陷波器。

除了频率,还可调整陷波器深度、品质因数,但要注意设置合适。陷波深度深, 机械共振抑制的效果可能很好,但会造成相位变化大,有时反而会加强振动。品质因 数小,陷波宽度宽,机械共振抑制的效果可能很好,但会造成相位变化区域大,有时 反而会加强振动。

4.5.3 自动陷波器

由参数 P213 选择是否开启自动陷波器功能: 0 为不开启, 1 为开启。自动陷波器功能适用于 300Hz 带宽以上频率的振动,可以实现对这类频率范围的振动的抑制功能。

在参数 P213 置 1 后,将打开自动陷波器功能,当发生 300Hz 以上的机械振动时,驱动器将自动进行振动频率点的检测与陷波器的参数设置等工作,完成对振动点的抑制,无需手动设置陷波器的相关参数,检测到的振动点频率存储在参数 P200 中。

4.5.4 陷波器自动中频抑振

将参数 P229 中频抑振开关参数设置为 2 时,开启自动中频抑振功能。通过参数 P289 可以修改振动判定等级,默认为 10rpm。当自动中频抑振功能开启时,可以对 100Hz~1500Hz 的机械振动进行振动频率检测与抑制,检测到的振动点频率数值将存储在 P226 中。

4.6 绝对值编码器的设定

4.6.1 绝对值编码器多圈信息的保存

绝对值编码器默认为单圈绝对值。若用户需要多圈位置值,则需要将参数P090设置为1,保存并重启驱动器。

为了保存绝对值编码器的多圈位置数据,需要安装电池单元。

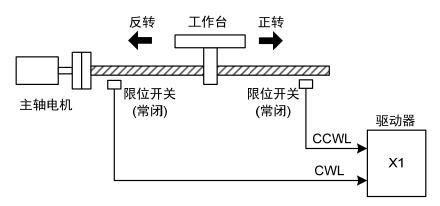
信号输入SD+、SD-(线的颜色分别为棕、棕白)、编码器电源0V、5V(线的颜色分别为黑+黑白,红+红白)连接在DB头上,外接电池引脚E+、E-(线的颜色分别为黄、黄白)连接在电池盒里面。

注意:请在主轴驱动器侧设置电池单元。电池单元请设置在主轴驱动器的任意一侧。电池电压要求: 3.2VDC~4.8VDC

电池电压超出范围后,在上电时,主轴驱动器会报警(Er 48),此时请更换电池。 更换电池后,为解除"编码器电池警报(Er 48)"显示,请确保主轴驱动器处于未使 能状态。接通主轴驱动器控制部分电源,并将绝对值编码器初始化,初始化后,多圈 值为 0。确认错误显示消失,主轴驱动器可正常工作。

4.6.2 绝对值编码器的初始化

在以下场合,须通过 Fn36 对绝对值编码器进行初始化,具体请参考 3.6.1 节。


- 最初起动机械时;
- 要将绝对值编码器的旋转量数据设为0时。

在以下场合,须通过 Fn37 进行编码器报警清除,具体请参考 3.6.1 节。

- 发生"编码器电池警报(Er 48)"时;
- 发生"编码器内部故障警报(Er 41)"时。

4.7 超程保护

超程保护功能是指当机械的运动部分超出设计的安全移动范围,限位开关动作,使电机强制停止的安全功能。超程保护示意图如下:

限位开关建议使用常闭接点,在安全范围内为闭合,超程为断开。连接到正转驱动禁止(CCWL)和反转驱动禁止(CWL),通过参数 P097 也可设置为使用与忽略。设置为使用,则必须接入限位信号;设置为忽略,则不需要该信号。参数缺省值是CCWL 和 CWL 都忽略,如果需要使用,必须修改参数 P097。即使在超程状态下,仍允许通过输入反向指令退出超程状态。

P097	反转驱动禁止 (CWL)	正转驱动禁止 (CCWL)
0	使用	使用
1	使用	忽略
2	忽略	使用
3 (缺省)	忽略	忽略

4.8 转矩限制

出于保护机械的目的,可以对输出转矩进行限制。

4.8.1 转矩限制参数

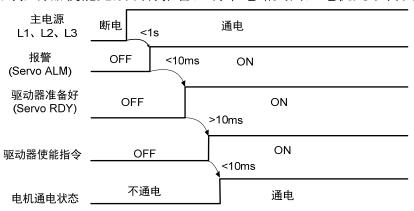
转矩限制有关的参数是:

参数	名称	参数范围	缺省值	单位
P065	内部正转(CCW)转矩限制	0~500	300	%
P066	内部反转(CW)转矩限制	-500~0	-300	%

转矩限制有关的 CiA402 参数是:

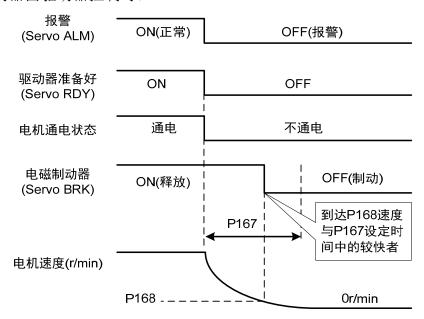
Index	Name	Units	Range	Data Type	Access	PDO
6072h	Max torque	0.1%	0-65535	U16	rw	RxPDO
60E0h	PositiveTorque Limit Value	0.1%	0-65535	U16	rw	RxPDO
60E1h	NegativeTorque Limit Value	0.1%	0-65535	U16	rw	RxPDO

4.8.2 转矩限制模式

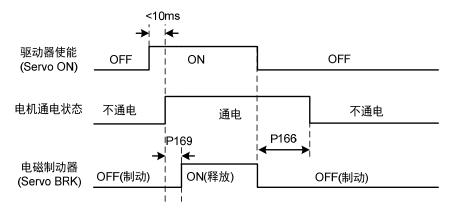

正转 (CCW)	反转 (CW)
由 P065, 6072h 和 60E0h 共同决定。	由 P066, 6072h 和 60E1h 共同决定。

注: 如有多个限制发生,最终限制值是绝对值较小的数值。

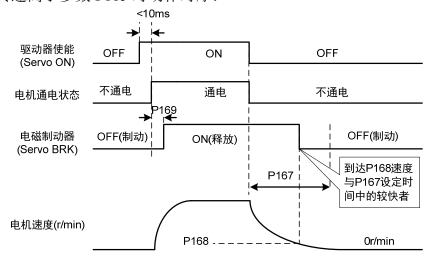
4.9 工作时序


4.9.1 电源接通时序

● 主电源接通后,约延时 1.5 秒,驱动器准备好信号(RDY)ON,此时可以接受驱动器使能指令,检测到驱动器使能有效,功率电路开启,电机激励,处于运行状态。检测到驱动器使能无效或有报警,功率电路关闭,电机处于自由状态。


4.9.2 驱动器 ON 时报警时序

电磁制动器由驱动器控制时:


4.9.3 电机静止时的驱动器 ON/OFF 动作时序

电磁制动器由驱动器控制时, 当电机转速低于参数 P165 时动作时序:

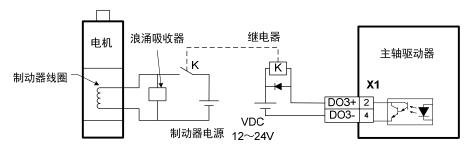
4.9.4 电机运转时的驱动器 ON/OFF 动作时序

当电机转速高于参数 P165 时动作时序:

4.10 电磁制动器

由	磁制	元力	哭	右.	*	 余数	τ.
ı	ניוו ממיו	ω_{J}	1111	ы	\mathcal{I}	シ ヌ	χ.

参数	名称	参数范围	缺省值	单位
P165	电机静止速度检测点	0~1000	5	r/min
P166	电机静止时电磁制动器延时时间	0~2000	150	ms
P167	电机运转时电磁制动器等待时间	0~2000	0	ms
P168	电机运转时电磁制动器动作速度	0~3000	100	r/min
P169	电磁制动器打开的延迟时间	0~1000	0	ms


4.10.1 电磁制动器使用

下图是制动器接线图,驱动器的制动释放信号 BRK 连接继电器线圈,继电器触点连接制动器电源。制动器电源由用户提供,并且具有足够容量。建议安装浪涌吸收器来抑制继电器通/断动作造成的浪涌电压。也可用二极管作浪涌吸收器,要注意会造成少许制动延时。

电机停稳后静止后(速度小于 P165)驱动器 OFF,这时电机继续通电以保持位置,制动器从释放到制动,稳定一段时间后(时间由参数 P166 确定),撤除电机供电。

电机从不使能状态变化到使能状态时,电机电流开通到电磁制动器松开(DO 输出端子 BRK ON)的延时时间由参数 P169 确定。

电机在运行中(速度大于 P165)驱动器 OFF,这时电机电流切断,制动器继续呈释放状态,延时一段时间后,制动器制动。这是为了使电机从高速旋转状态减速为低速后,再使机械制动器动作,避免损坏制动器。延时时间是参数 P167 或电机速度减速到参数 P168 的速度所需时间,取两者中的最小值。

4.11 离线参数辨识功能

异步电机离线参数辨识功能有关参数:

参数	名称	参数范围	缺省值	单位
P700	电机类型选择	0~2	1	
P701	异步电机运行模式	0~2	2	
P702	异步电机定子电阻	$0.010 \sim 10.000$	0.748	0
P703	异步电机转子电阻	$0.010 \sim 10.000$	0.553	Ω
P704	异步电机互感	1.0~1000.0	97.0	II
P705	异步电机定子漏电感	0.1~1000.0	2.9	mH
P706	异步电机极对数	1~1000	2	对
P707	异步电机转动惯量	0.01~300.00	15.10	10^-3k g*m^2
P709	异步电机额定转矩	0.1~400.0	35.0	N
P710	异步电机最大转矩百分比	0~1000	200	%
P712	异步电机额定电流	0.1~100.0	11.9	A
P713	异步电机额定功率	$0.1 \sim 100.0$	5.5	kw
P714	异步电机额定转速	500~10000	1500	rpm
P1080	惯量辨识类型	0~1	0	

当使用异步电机离线参数辨识功能时,需要配置电机类型为异步电机(P700=1),异步电机运行模式为 FVC 有感矢量模式(P701=2),正确设置异步电机极对数 P706,异步电机额定转矩 P709,异步电机额定电流 P712,异步电机额定功率 P713,异步电机额定转速 P714。

4.11.1 电气参数辨识

先通过 Fn-2 进入单机模式,然后通过 Fn6 功能触发异步电机离线参数辨识功能,完成对定子电阻,转子电阻,互感,漏感的辨识。运行 Fn6 功能后,使能灯亮,当屏幕显示 DONE 且使能灯灭时,辨识结束,辨识过程大概需要花费半分钟左右。辨识结束后,按后退键退出 Fn6 功能,此时可以通过 P 菜单查询辨识的参数结果 P702~P705,通过 E-set 保存该结果。

参数	名称	参数范围	缺省值	单位
P702	异步电机定子电阻	0.010~10.000	0.748	Ω
P703	异步电机转子电阻	$0.010 \sim 10.000$	0.553	22
P704	异步电机互感	1.0~1000.0	97.0	mII.
P705	异步电机定子漏电感	$0.1 \sim 1000.0$	2.9	mH

4.11.2 机械参数辨识

先通过 Fn-2 进入单机模式,然后通过 Fn1 功能触发异步电机机械参数辨识功能,完成对异步电机自身惯量的辨识。在辨识前除了需要正确设置上述提到的参数外,还需要将参数 P1080 设置为 1,此时运行 Fn1 功能可以完成对于异步电机自身惯量的辨识。运行 Fn1 功能后,使能灯亮,电机进行 6 次往返运动后结束辨识过程。当屏幕显示 DONE 且使能灯灭时,辨识结束。辨识结束后,按后退键退出 Fn1 功能,此时可以通过 P 菜单查询辨识的参数结果 P707,通过 E-set 保存该结果。

参数	名称	参数范围	缺省值	单位
P707	异步电机转动惯量	0.01~300.00	15.10	10^-3k g*m^2

4.12 主轴准停功能

通过修改 0x6098 对象值配置准停方向,当设置该值为 34 时,准停方向为正向,当设置该值为 33 时,准停方向为负向。通过修改 0x609A 对象设置准停加减速度,单位为 UserUnit/s²。通过修改 0x6099.0x02 对象设置准停速度,单位为 UserUnit/s。通过修改 0x607C 对象设置准停偏置,单位为 UserUnit。

在 CSP 和 CSV 模式下,通过 0x6060 对象将控制模式切换到 HM 模式即开始准停步骤,准停过程即回零模式 33 或者 34 的过程。

准停过程通过 0x6041 对象显示准停过程状态, 其 bit10 在准停过程开始后置 0, 准停过程结束后置 1; bit12 在准停过程开始后置 0, 准停过程完成后置 1; bit13 在准停过程开始后置 0, 准停过程出错时置 1。

通过 0x6060 对象将控制模式切换到 CSP 或 CSV 模式即可退出准停模式。

4.13 电机编码器和主轴编码器的选择

电机编码器和主轴编码器可支持正余弦编码器、串口绝对值编码器、增量式编码器,用户可根据实际情况灵活设置相关参数,详见如下列表:

	码盘接口	码盘类型	P088	P090	P839	P832	P856	P089	P091	P843	P838	P828	P829	P857	P830	P831	P880	P881	P885	P886	P887	P888			
1	电机编码器	正余弦				17	0							1			3	0	0/1	1	0	1			
Ľ	主轴编码器	增量ABZ2				l ''	Ů							•			,	Ů	۵,	'	Ľ	'			
2	电机编码器	串口绝对值					1	1/6	0/1	0	17			1			3	2	0/1	1	0	1			
Ĺ	主轴编码器	增量ABZ2						1,0	0,,					•			,		۵,	'		'			
3	电机编码器	增量ABZ1					4	11				2500	0/1	1			3	2	0/1	1	0	1			
Ľ	主轴编码器	增量ABZ2				J					'''				2300	6	•			ّ		<u> </u>	,	لنا	'
4	电机编码器	正余弦				17	1	1/6	0/1	0				0			2	0	0/1	13	1072	1			
Ľ	主轴编码器	串口绝对值			-		''	'	' ''6	0,,					,			4	•	٥,	13	1072			
5	电机编码器	增量ABZ1					1	11				2500	0/1	0			0	2	0/1	13	1072	1			
Ľ	主轴编码器	正余弦						'''				2300	6,1	,			,		۵,	13	1072	'			
6	电机编码器	串口绝对值					1	1/6	0/1	0	17			0			0	2	0/1	13	1072	1			
Ľ	主轴编码器	正余弦					'	1,0	0,,	ľ	.,			Ů			Ů	2	U, .	"	1072	'			

注: 1: 示例中增量ABZ码盘线数2500线

4.13.1 正余弦编码器的配置流程

参数设置:

参数	名称	参数范围	缺省值	单位	说明
P089	次编码器厂家	1~31	11		使用正余弦编码器时需要设置为2
P838	正余弦编码器单齿位数	4~32	23	位	使用正余弦编码器 需要改为 16
P894	第二编码器齿数	0~32767	0	个	
P897	正余弦编码器计数方向	0~1	0		

- 1. 安装好正余弦编码器后,编码器类型 P089 需要修改为 2 后,保存重启;
- 2. 正确修改 P838, P894, P897, 使用 Fn45 功能保存相关参数后重启;
- 3. 触发 Fn-2 修改为单机模式后, 触发 Fn19 功能进行正余弦编码器的校准,过程会持续 5~10 秒,完成后驱动器屏幕会显示 Er 40,表示校准完成后的通信断开,重启后即可使用。

^{2:} 示例中串口绝对值码盘分辨率17位

第5章参数

5.1 参数概览

本驱动器的参数, Data Type均为INT16, INT16范围如下表所示。

名称	描述	范围
INT16	Signed 16bit	-32768~32767

经由SDO通讯所能够写入与读出的参数格式说明:

所读取和写入的参数须为十进制的整型数,在驱动器显示面板与说明书手册中标记有带小数点的参数,在读取和写入操作的过程中都被放大了相应的倍数,使其变成十进制的整型数。显示格式为二进制的参数,在读取和写入操作的过程中实际使用的为其等值的十进制整型数。

具体如下:

参数序号	说明书手册显示值	通讯操作值	变换方式
P005	40	40	不变
P006	20.0	200	有1位小数点,放大10倍
P007	1.00	100	有 2 位小数点, 放大 100 倍
P120	00000 (二进制)	0 (十进制)	二进制转十进制

5.1.1 0 段参数

参数	索引 Index	名称	参数范围	缺省值	生效 方式	単位
P000	无	密码	0~9999	315	立即	
P001	无	驱动器代码	*	*	立即	
P002	无	电机代码	*	*	保存 重启	
P003	2003h	软件版本	*	*		
P004	无	控制方式	0~5	0	立即	
P005	2005h	第1速度环增益	1~3000	40	立即	Hz
P006	2006h	第1速度环积分时间常数	1.0~1000.0	50.0	立即	ms
P007	2007h	第1转矩滤波时间常数	0.00~50.00	1.00	立即	ms
P008	无	刚性等级	0~21	0	立即	
P009	2009h	第1位置环增益	1~1000	25	立即	1/s
P010	无	第2速度环增益	1~3000	10	立即	Hz
P011	无	第2速度环积分时间常数	1.0~1000.0	50.0	立即	ms

参数	索引	名称	参数范围	缺省值	生效 方式	単位
P012	无	第2转矩滤波时间常数	0.01~50.00	1.50	立即	ms
P013	无	第2位置环增益	1~1000	10	立即	1/s
P017	2011h	负载转动惯量比	0.0~200.0	1.0	保存 重启	倍
P018	2012h	速度环 PDFF 控制系数	0~100	100	立即	%
P019	2013h	速度检测滤波时间常数	0.01~50.00	2.00	立即	ms
P021	2015h	位置环前馈增益	0~100	0	立即	%
P022	2016h	位置环前馈滤波时间常数	0.20~50.00	1.00	立即	ms
P023	无	速度环前馈增益	0~100	0	立即	%
P024	无	速度环前馈滤波时间常数	0.20~50.00	1.00	立即	ms
P040	无	位置指令指数平滑滤波时间	0~1000	0	保存	ms
P041	无	位置指令线性滤波时间	0~256	0	重启	ms
P042	202Ah	CWL, CCWL 方向禁止的方式	0~1	1	立即	
P060	203Ch	速度指令加速时间	0~30000	500	立即	ms
P061	203Dh	速度指令减速时间	0~30000	1000	立即	ms
P063	无	EMG(紧急停机)的减速时间	0~10000	1000	立即	ms
P064	无	转矩限制选择	0~3	3	立即	
P065	2041h	内部正转(CCW)转矩限制	0~500	300	立即	%
P066	2042h	内部反转(CW)转矩限制	-500∼0	-300	立即	%
P067	2043h	外部正转(CCW)转矩限制	0~500	100	立即	%
P068	2044h	外部反转(CW)转矩限制	-500~0	-100	立即	%
P069	无	试运行转矩限制	0~300	100	立即	%
P070	2046h	正转(CCW)转矩过载报警水平	0~300	300	但专	%
P071	2047h	反转(CW)转矩过载报警水平	-300~0	-300	保存 重启	%
P072	2048h	转矩过载报警检测时间	0~10000	0	里归	10ms
P074	204Ah	回零停止模式的加减速时间	0~10000	150	立即	100ms
P075	204Bh	最高速度限制	0~25000	8000	立即	r/min
P076	无	JOG 运行速度	0~7500	100	立即	r/min
P078	204Eh	转矩控制时速度限制	0~5000	3000	立即	r/min
P080	2050h	位置超差检测	0.00~327.67	200.00		卷
P083	无	动态制动模式	0~1	0		
P084	2054h	制动电阻选择开关	0~1	1	归去	
P085	2055h	外接制动电阻的阻值	1~750	50	保存	Ω
P086	2056h	外接制动电阻的功率	1~10000	60	重启	W
P088	2058h	主编码器厂家	0~31	0		
P089	2059h	次编码器厂家	1~31	11		

参数	索引 Index	名称	参数范围	缺省值	生效 方式	单位
P090	205Ah	主绝对值编码器类型	0~3	0	保存	
P091	无	次绝对值编码器类型	0~2	0	重启	
P092	无	第三编码器厂家	0~1	0	里归	
P094	205Eh	风扇开启温度点	25~125	50	立即	$^{\circ}\mathbb{C}$
P095	无	演示运行种类	0~2	0	立即	
P096	无	初始显示项目	0~35	20	保存	
P096)L		0,~33	29	重启	
P097	2061h	忽略驱动禁止	0~3	3	立即	
P098	无	强制使能	0~1	0	立即	

5.1.2 1段参数

参数	索引 Index	名称	参数范围	缺省值	生效 方式	单位
P100	2064h	数字输入 DI1 功能	-46~46	24	立即	
P101	2065h	数字输入 DI2 功能	-46~46	2	立即	
P102	2066h	数字输入 DI3 功能	-46~46	3	立即	
P103	2067h	数字输入 DI4 功能	-46~46	4	立即	
P110	206Eh	数字输入 DI1 滤波	$0.1 \sim 100.0$	2.0	立即	ms
P111	206Fh	数字输入 DI2 滤波	$0.1 \sim 100.0$	2.0	立即	ms
P112	2070h	数字输入 DI3 滤波	$0.1 \sim 100.0$	2.0	立即	ms
P113	2071h	数字输入 DI4 滤波	0.1~100.0	2.0	立即	ms
P118	无	数字高速输入 HDI1 滤波	1~8	4	保存	
P119	无	数字高速输入 HDI2 滤波	1~8	4	重启	
P120	2078h	数字输入 DI 强制有效 1	00000~11111	00000	立即	
P121	2079h	数字输入 DI 强制有效 2	00000~11111	00000	立即	
P122	207Ah	数字输入 DI 强制有效 3	00000~11111	00000	立即	
P123	207Bh	数字输入 DI 强制有效 4	00000~11111	00000	立即	
P124	207Ch	数字输入 DI 强制有效 5	00000~11111	00000	立即	
P125	无	数字输入 DI 强制有效 6	00000~11111	00000	立即	
P126	无	数字输入 DI 强制有效 7	00000~11111	00000	立即	
P127	无	数字输入 DI 强制有效 8	00000~11111	00000	立即	
P130	2082h	数字输出 DO1 功能	-33~33	2	立即	
P131	2083h	数字输出 DO2 功能	-33~33	3	立即	
P132	2084h	数字输出 DO3 功能	-33~33	8	立即	

25 N/I	索引	hard .	A W # F	L.I. dis bla	生效	
参数	Index	名称	参数范围	缺省值	方式	单位
P138	无	数字输出 DO 强制选择 1	0~7	0	立即	
P139	无	数字输出 DO 强制内容 1	0~7	0	立即	
P149	无	动态制动延迟时间	30~1000	100	立即	ms
P150	无	定位完成范围	0~32767	10	立即	脉冲
P151	无	定位完成回差	0~32767	5	立即	脉冲
P152	无	定位接近范围	0~32767	500	立即	脉冲
P153	无	定位接近回差	0~32767	50	立即	脉冲
P154	无	到达速度	-5000~5000	500	立即	r/min
P155	无	到达速度回差	0~5000	30	立即	r/min
P156	无	到达速度极性	0~1	0	立即	
P157	无	到达转矩	-300~300	100	立即	%
P158	无	到达转矩回差	0~300	5	立即	%
P159	无	到达转矩极性	0~1	0	立即	
P160	20A0h	零速检测点	0~1000	10	立即	r/min
P161	20A1h	零速检测回差	0~1000	5	立即	r/min
P162	20A2h	零速箝位模式	0~1	0	立即	
P163	20A3h	位置偏差清除方式	0~1	0	立即	
P164	20A4h	紧急停机的方式	0~2	0	立即	
P165	20A5h	电机静止速度检测点	0~1000	5	立即	r/min
P166	20A6h	电机静止时电磁制动器延时时间	0~2000	150	立即	ms
P167	20A7h	电机运转时电磁制动器等待时间	0~2000	0	立即	ms
P168	20A8h	电机运转时电磁制动器动作速度	0~3000	100	立即	r/min
P169	20A9h	电磁制动器打开的延迟时间	0~1000	0	立即	ms
P172	无	编码器输出线数	1~16384	2500		
P173	无	编码器输出 B 脉冲相位	0~1	0	保存	
P174	无	编码器输出 Z 脉冲相位	0~1	0	重启	
P175	无	编码器输出 Z 脉冲宽度	0~1	0		
P176	无	到达转矩窗口	0~3000	0	立即	%
P177	无	到达转矩窗口时间	0~32767	0	立即	ms
P190	无	 原点位置偏移角度	0.0~360.0	0.0	非使能	0
1170		冰 四县 何 7 7 7	0.0 300.0	0.0	时立即	
P191	无	对象 606D 速度到达窗口倍数	1~32767	1	立即	
P193	无	录波模式	0~1	0	保存	
P195	无	编码器多圈溢出报警屏蔽	0~1	1	重启	
P198	无	录波设置	0~2	0	立即	

5.1.3 2 段参数

	索引				生效	
参数	系力 Index	名称	参数范围	缺省值	方式	单位
P200	20C8h	第1共振陷波器频率	50~5000	5000	立即	Hz
P201	20C9h	第1共振陷波器品质因数	1~100	7	立即	TIZ
P202	20CAh	第1共振陷波器深度	0~60	0	立即	dB
P203	20CBh	第 2 共振陷波器频率	50~5000	5000	立即	Hz
P204	20CBn	第 2 共振陷波器品质因数	1~100	7	立即	TIZ
P205	20CDh	第2共振陷波器深度	0~60	0	立即	dB
P206	无	第2转矩滤波器频率	100~5000	5000	立即	Hz
P207	无	第2转矩滤波器品质因数	1~100	50	立即	TIZ
P208	无	增益切换选择	0~15	0	立即	
P208	光 无	增益切换水平	0~32767	100	立即	
P210	光 无	增益切换水平回差	0~32767	5	立即	
P210	光 无	增益切换延迟时间	0~3000	5	,	
					立即	ms
P212	无	增益切换时间	0~3000	5	立即	ms
P213	无	自动陷波器开启	0∼FFFF	5000	立即	7.7
P214	无	第3共振陷波器频率	50~5000	5000	立即	Hz
P215	无	第 3 共振陷波器品质因数	1~100	7	立即	ID.
P216	无	第 3 共振陷波器深度	0~60	0	立即	dB
P217	无	第 4 共振陷波器频率	50~5000	5000	立即	Hz
P218	无	第 4 共振陷波器品质因数	1~100	7	立即	15
P219	无	第 4 共振陷波器深度	0~60	0	立即	dB
P220	无	端部振动检测滤波器频率	10~2000	200	立即	Hz
P221	无	端部振动最小检测幅值	3~32767	5	立即	脉冲
P222	20DEh	端部抑振的补偿系数	1.0~100.0	1.0	立即	
P223	20DFh	端部抑振开关	0~3	0	立即	
P224	20E0h	端部抑振周期手动设置	0~1000	0	立即	ms
P225	无	摩擦补偿扰动观测器开关	0~1	0	立即	
P226	无	中频振动 1 频率	50~2000	100	立即	Hz
P227	无	中频抑振 1 的补偿系数	1~1000	100	立即	%
P228	无	中频抑振 1 的阻尼系数	0~300	100	立即	%
P229	无	中频抑振 1 开关	0~2	0	立即	
P231	无	中频振动 2 频率	50~2000	100	立即	Hz
P232	无	中频抑振 2 的补偿系数	1~1000	100	立即	%
P233	无	中频抑振 2 的阻尼系数	0~300	100	立即	%
P234	无	中频抑振 2 开关	0~2	0	立即	

参数	名称	参数范围	缺省值	生效 方式	単位
P236	速度反馈来源	0~1	0	立即	
P237	高响应模式下中频抑振模式	0~1	1	立即	
P238	高响应模式下高抗扰性模式增益百分比	0~1000	50	立即	%
P239	高响应模式下高抗扰性模式开关	0~2	0	立即	
P240	高响应模式速度环跟踪系数	10~1000	100	立即	%
P241	摩擦补偿扰动观测器增益	10~1000	100	立即	Hz
P242	摩擦补偿扰动观测器补偿系数	0~1000	0	立即	%
P243	摩擦补偿扰动观测器转矩系数	0~1200	400	立即	%
P244	高响应模式下电流环模式选择	0~3	0	立即	
P245	高响应模式速度观测器非线性模式	0~1	1	立即	
P246	高响应模式速度反馈来源	0~1	0	立即	
P247	高响应模式使能	0~2	0	立即	
P248	高响应模式速度观测器带宽	100~2000	150	立即	Hz
P249	高响应模式速度观测器带宽参数设置有效	0~1	1	立即	
P250	高响应模式电流观测器带宽	50~400	180	立即	10Hz
P251	高响应模式电流观测器带宽参数设置有效	0~1	0	立即	
P252	高响应模式第1转矩滤波时间常数	0.05~5.00	0.10	立即	ms
P253	高响应模式速度观测器类型	0~5	0	立即	
P254	高响应模式速度观测器非指数型增益倍数	0.0~10.0	1.5	立即	倍
P255	速度观测器增益	10~1000	120	立即	Hz
P256	速度观测器补偿系数	0~1000	150	立即	%
P258	惯量推定模式	0~9	0	立即	
P269	惯量推定方式	0~10	0	立即	
P270	模型追踪控制开关	0~3	0	立即	
P271	模型追踪控制增益	10~2000	40	立即	Hz
P272	模型追踪位置指令滤波关闭使能	0~1	0	立即	
P273	模型追踪正方向输出比例	0~1000	100	立即	%
P274	模型追踪反方向输出比例	0~1000	100	立即	%
P277	模型追踪速度补偿前馈	0~100	100	立即	%
P280	模型跟踪速度补偿前馈的滤波时间	0.10~50.00	0.50	立即	ms
P281	模型跟踪速度环增益	1~3000	40	立即	Hz
P282	模型跟踪速度环积分时间常数	1.0~1000.0	20.0	立即	ms
P283	惯量推定增益等级	0~2	0	立即	
P285	振动报警时间	0~100	0	立即	s
P289	振动检出水平	0~2000	60	立即	Hz
P295	自动调整模式下振动检出触发水平	1~200	20	立即	rpm

参数	名称	参数范围	缺省值	生效 方式	单位
P296	自整定模式	0~3	0	立即	

5.1.4 3 段参数

参数	名称	参数范围	缺省值	生效 方式	单位
P300	站点别名	0~239	0	保存	
P306	路径段插补类型	0~2	2	重启	
P377	PP 路径 Halt 恢复模式	0~1	0	立即	

5.1.5 6 段参数

参数	名称	参数范围	缺省值	生效 方式	单位
P604	电子齿轮电机端高位	0~32767	0		
P605	电子齿轮电机端低位	0~32767	1	保存	
P606	电子齿轮负载端高位	0~32767	0	重启	
P607	电子齿轮负载端低位	0~32767	1		

5.1.6 7段参数

参数	名称	参数范围	缺省值	生效 方式	单位
P700	电机类型选择	0~2	1	保存	
P701	异步电机运行模式	0~2	2	重启	
P702	异步电机定子电阻	$0.010 \sim 10.000$	0.748	立即	Ω
P703	异步电机转子电阻	$0.010 \sim 10.000$	0.553	立即	52
P704	异步电机互感	1.0~1000.0	97.0	立即	шП
P705	异步电机定子漏电感	0.1~1000.0	2.9	立即	mH
P706	异步电机极对数	1~1000	2	立即	对
P707	异步电机转动惯量	0.01~300.00	15.10	立即	10^-3k
P/0/	升少电机农约贝里	0.01/~300.00	13.10	77.121	g*m^2
P708	异步电机额定电压	12~600	380	立即	V
P709	异步电机额定转矩	0.1~400.0	35.0	立即	N

参数	名称	参数范围	缺省值	生效 方式	单位
P710	异步电机最大转矩百分比	0~1000	200	立即	%
P712	异步电机额定电流	0.1~100.0	11.9	立即	A
P713	异步电机额定功率	0.1~100.0	5.5	立即	kw
P714	异步电机额定转速	500~10000	1500	立即	rpm
P715	异步电机最大速度百分比	0~2000	800	立即	%
P716	异步电机速度偏差过大报警使能	0~1	1	立即	
P717	异步电机速度偏差过大报警判定值	0~10000	500	立即	rpm
P718	异步电机速度偏差过大报警判定时间	0~10000	200	立即	ms
P719	异步电机准停滤波功能使能	0~1	0	立即	
P720	异步电机准停滤波时间常数	1~5000	32	立即	ms
P721	异步电机准停结束延迟时间	1~5000	2000	立即	ms
P722	ABZ 编码器补偿低速衰减比例	0.0~100.0	0.2	立即	%
P723	ABZ 编码器补偿滞环切换功能使能	0~3	3	立即	
P724	ABZ 编码器补偿低速滞环区间上限	0~1000	60	立即	rpm
P725	ABZ 编码器补偿低速滞环区间下限	0~1000	30	立即	rpm
P729	异步电机开环控制方式零位补偿电压	0~100	15	立即	
P751	异步电机有感矢量控制方式磁链环增益带宽	1~3000	40	立即	Hz
P752	异步电机有感矢量控制方式磁链环积分时间 常数	1.0~1000.0	10.0	立即	ms
P753	异步电机有感矢量控制方式弱磁电流总限制	0.0~500.0	50.0	立即	A
P754	异步电机有感矢量控制方式弱磁比例系数	0.000~ 10.000	0.001	立即	
P755	异步电机有感矢量控制方式弱磁积分系数	0.00~100.00	1.00	立即	
P756	异步电机有感矢量控制方式弱磁有效速度值	0~30000	1500	立即	rpm
P757	异步电机有感矢量控制方式弱磁角度补偿模 式	0~3	3	立即	
P758	异步电机有感矢量控制方式弱磁角度补偿角 度比例	-180~180	2	立即	
P759	异步电机有感矢量控制方式正常运行时死区 补偿使能	0~1	1	立即	
P760	异步电机有感矢量控制方式速度反馈平均值 滤波开启	0~1	0	立即	
P761	异步电机有感矢量控制方式死区补偿比例	0~1000	100	立即	%
P762	异步电机有感矢量控制方式速度观测器来源	0~1	1	立即	
P763	异步电机有感矢量控制方式低速磁链给定比 例	1~200	40	立即	%

参数	名称	参数范围	缺省值	生效 方式	单位
P764	异步电机有感矢量控制方式中速磁链给定比例	1~200	20	立即	%
P765	异步电机有感矢量控制方式高速磁链给定比例	1~150	15	立即	%
P766	异步电机有感矢量控制方式极高速磁链给定比 例	1~100	8	立即	%
P767	异步电机有感矢量控制方式磁链观测器幅值补 偿比例	0~200	45	立即	%
P768	异步电机有感矢量控制方式磁链观测器速度来 源	0~1	1	立即	
P769	异步电机有感矢量控制方式磁链观测器比例增 益	0~1000	10	立即	
P770	异步电机有感矢量控制方式磁链观测器扰动观 测系数	0~1000	20	立即	
P771	异步电机有感矢量控制方式参数辨识模式	0~1	0	立即	
P772	异步电机有感矢量控制方式磁链观测器电压给 定来源	0~1	0	立即	
P773	异步电机有感矢量控制方式母线电压模式	0~1	0	立即	
P774	异步电机有感矢量控制方式D轴电压限幅比例	0~300	80	立即	%
P775	异步电机有感矢量控制方式总电压限幅比例	0~300	88	立即	%
P776	异步电机有感矢量控制方式磁链观测器电压给 定延迟	0~2	0	立即	
P777	异步电机有感矢量控制方式弱磁速度切换上限	0~3000	0	立即	rpm
P778	异步电机有感矢量控制方式弱磁速度切换下限	0~3000	0	立即	rpm
P779	异步电机有感矢量控制方式弱磁速度误差滤波 器带宽	1~3000	150	立即	Hz
P780	异步电机有感矢量控制方式磁链环控制方式	0~1	0	立即	
P794	异步电机有感矢量控制方式 D 轴电流环增益百分比例	0.01~5.00	1.00	立即	
P795	异步电机有感矢量控制方式转矩系数来源	0~2	0	立即	
P796	异步电机有感矢量参数辨识第一电流百分比例	0.01~2.00	0.30	立即	
P797	异步电机有感矢量参数辨识第二电流百分比例	0.01~2.00	0.70	立即	

5.1.7 8 段参数

参数	名称	参数范围	缺省值	生效 方式	单位
P838	正余弦编码器单齿位数	4~32	23		位
P856	第二编码器关联轴号	0~1	1		
P857	第三编码器关联轴号	0~1	0		
P880	位置反馈对应的编码器	0~3	2		
P881	全闭环速度环反馈来源	-1~3	2		
P882	全闭环模式	0~1	0		
P883	全闭环偏差滤波器带宽	0~1000	10		Hz
P884	全闭环双编码器位置差检测	0.00~100.00	0.05	保存	巻
P885	位置反馈对应的编码器方向	0~1	0	重启	
P886	位置反馈编码器旋转一圈对应的脉冲数高 位	0~30000	0	里 归	
P887	位置反馈编码器旋转一圈对应的脉冲数低 位	0~9999	4096		
P888	位置反馈编码器脉冲设置生效	0~1	0		
P893	主编码器齿数	0~32767	0		个
P894	第二编码器齿数	0~32767	0		个
P897	正余弦编码器计数方向	0~1	0		
P898	电机编码器相位角补偿使能	0~1	1	立即	
P899	电机编码器相位角补偿时间	0~1	0	立即	

5.1.8 10 段参数

参数	名称	参数范围	缺省值	生效 方式	单位
P1058	永磁同步电机无位置传感器控制使能后等 待时间	0.0~100.0	2.0	立即	S
P1059	永磁同步电机无位置传感器控制电流注入 关闭选择	0~1	1	立即	
P1060	永磁同步电机无位置传感器控制使能	0~1	0	立即	
P1061	永磁同步电机无位置传感器控制观测器增 益	0~1000	250	立即	Hz
P1062	永磁同步电机无位置传感器控制速度滤波 器带宽	0~1000	150	立即	Hz

参数	名称	参数范围	缺省值	生效 方式	単位
P1063	永磁同步电机无位置传感器控制低速增益 百分比	0.0~100.0	100.0	立即	%
P1064	永磁同步电机无位置传感器控制低速电流 注入百分比	0~300	10	立即	%
P1065	永磁同步电机无位置传感器控制低速电流 注入切换速度	0~5000	300	立即	rpm
P1066	永磁同步电机无位置传感器控制磁链给定 百分比	0~1000	100	立即	%
P1067	永磁同步电机无位置传感器控制死区补偿 使能	0~1	0	立即	
P1068	永磁同步电机无位置传感器控制死区补偿 比例	0~1000	100	立即	%
P1069	永磁同步电机无位置传感器控制电流注入 结束切换速度	0~5000	800	立即	rpm
P1070	永磁同步电机无位置传感器控制电流报警 基准	0.0~100.0	0.0	立即	1A/100r pm
P1071	永磁同步电机无位置传感器控制磁链角补 偿使能	0~2	0	立即	
P1072	永磁同步电机无位置传感器控制磁链角补 偿电角度	-45~45	0	立即	٥
P1073	永磁同步电机无位置传感器控制自动磁链 角补偿生效时间	0~10000	30	立即	S
P1074	永磁同步电机无位置传感器控制方法	0~2	0	立即	
P1075	永磁同步电机无位置传感器控制非线性磁 链观测器法增益	0.00~300.00	1.20	立即	倍
P1076	永磁同步电机无位置传感器控制变参数功 能使能	0~3	0	立即	
P1077	永磁同步电机无位置传感器控制变参数功 能电阻变换倍数	0.0~1.0	0.1	立即	倍/额定 电流
P1080	惯量辨识类型	0~1	0	立即	
P1081	旋转电机惯量辨识功能需要配置的功率等级	0.0~1000.0	2.0	立即	kw

5.2 DI 功能一览表

序号	符号	DI 功能
0	NULL	无功能
2	ARST	报警清除
3	CCWL	正转驱动禁止
4	CWL	反转驱动禁止
15	EMG	紧急停机
24	REF	原点回归参考点

5.3 DO 功能一览表

序号	符号	DO 功能
0	OFF	一直无效
1	ON	一直有效
2	RDY	驱动器准备好
3	ALM	报警
8	BRK	电磁制动器
9	RUN	驱动器运行中
11	TRQL	转矩限制中
12	SPL	速度限制中
13	HOME	原点回归完成
23	BRKNET	电磁制动器(EtherCAT 对象控制)
24	NETIO1	
25	NETIO2	
26	NETIO3	EtherCAT 相应控制字控制 IO
27	NETIO4	
28	NETIO5	
30	DBC	动态制动

5.4 参数详解

5.4.1 0段参数

P000	Index 无	密码					
Cub Indov		Data	A 22255	PDO	Setting	Initial	Unit
2	Sub Index		Access	Mapping	Range	Value	Onit
	0	INT16	RO	No	0~9999	315	

- 分级管理参数,可以保证参数不会被误修改。
- 设置为 315,可以查看和修改 0、1、2、3、6、7、8、10、11 段参数。设置为非 315 数值,只能查看参数,但不能修改。
- 一些特别的操作需要设置合适的密码。

P001	Index 无	驱动器代码	驱动器代码					
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RO	No	*	*		

● 当前使用的驱动器型号。出厂已设置好,用户不能修改。

PO	002 Index 无	电机代码					
	Sub Index	Data	Access	PDO	Setting	Initial	Unit
	Sub macx	Type	Access	Mapping	Range	Value	Ollit
	0	INT16	RO	No	*	*	

● 最高位表示厂家,中间两位表示电机功率等级,最低位表示电机编号。例如 1371 表示 1 号厂家 3.7kw 功率的编号 1 电机。

0: 不生效

P003	Index 2003h	软件版本					
S	Sub Index	Data	Access	PDO	Setting	Initial	Unit
		Type		Mapping	Range	Value	
	0	INT16	RO	No	*	*	

● 软件版本号,不能修改。

P004	Index 无	控制方式					
Sub Index		Data	A 22222	PDO	Setting	Initial	Unit
		Type	Access	Mapping	Range	Value	Onit
	0	INT16	RO	No	0~5	0	

- 参数意义:
 - 0: 位置控制;
 - 1: 速度控制;

- 2: 转矩控制;
- 3~5: 保留。

P005	Index 2005h	第1速度理	第1速度环增益					
S	ub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RW	No	1~3000	40	Hz	

- 速度调节器的比例增益,增大参数值,可使速度响应加快,过大容易引起振动和 噪声。
- 如果 P017(转动惯量比)设置正确,则参数值等同于速度响应频宽。

P006 Index 2006h	第1速度3	第1速度环积分时间常数				
Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
0	INT16	RW	No	1.0~1000.0	50.0	ms

- 速度调节器的积分时间常数,减小参数值,可减小速度控制误差,增加刚性,过 小容易引起振动和噪声。
- 设置为最大值(1000.0)表示取消积分,速度调节器为 P 控制器。

P007	Index 2007h	第1转矩测	第1转矩滤波时间常数						
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit		
	0	INT16	RW	No	0.00~50.00	1.00	ms		

- 转矩的低通滤波器,可抑制机械引起振动。
- 数值越大,抑制振动效果越好,过大会造成响应变慢,可能引起振荡;数值越小,响应变快,但受机械条件限制。
- 负载惯量较小时,可设置较小数值,负载惯量较大时,可设置较大数值。

P008	Index 无	刚性等级	刚性等级								
S	ub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit				
	0	INT16	RW	No	0~21	0					

● 参数意义:

0: 刚性等级设置不生效

1~21: 等级设置越高,系统响应越快,但过高的刚性可能会引起振动

P009	Index 2009h	第1位置理	第1位置环增益						
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit		
	0	INT16	RW	No	1~1000	25	1/s		

● 位置调节器的比例增益;增大参数值,可减小位置跟踪误差,提高响应,过大可能导致超调或振荡。

P010	Index 无	第2速度环增益						
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RO	No	1~3000	10	Hz	

● 参考参数 P005 说明, 启用增益切换功能, 才需要设置。

P011 Index 无	第2速度理	第2速度环积分时间常数							
Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit			
0	INT16	RO	No	1.0~1000.0	50.0	ms			

● 参考参数 P006 说明, 启用增益切换功能, 才需要设置。

P012 Index 无	第2转矩测	第2转矩滤波时间常数							
Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit			
0	INT16	RO	No	0.01~50.00	1.50	ms			

● 参考参数 P007 说明, 启用增益切换功能, 才需要设置。

P013 Index 无	第2位置理	第2位置环增益						
Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit		
0	INT16	RO	No	1~1000	10	1/s		

● 参考参数 P009 说明, 启用增益切换功能, 才需要设置。

P017 Index 2011h	负载转动性	负载转动惯量比							
Sub Index	Data	A	PDO	Setting	Initial	Unit			
Sub Ilidex	Type	Access	Mapping	Range	Value	Omi			
0	INT16	RW	No	0.0~200.0	1.0	倍			

● 机械负载转动惯量(折算到电机轴)对电机转子转动惯量的比率。

P018	Index 2012h	速度环 PD	速度环 PDFF 控制系数						
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit		
	0	INT16	RW	No	0~100	100	%		

- 速度调节器的 PDFF 系数,可选择速度控制器结构,0 为 IP 调节器,100 为 PI 调节器,1~99 为 PDFF 调节器。
- 参数值偏大则系统具有高频率响应,参数值偏小则系统具有高刚度(抵抗偏差能力), 中等数值兼顾频率响应和刚度。

P019	Index 2013h	速度检测剂	速度检测滤波时间常数						
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit		
	0	INT16	RW	No	$0.01 \sim 50.00$	2.00	ms		

● 参数值越大,检测越平滑,参数值越小,检测响应越快,太小可能导致产生噪声, 太大可能导致振荡。

P021	Index 2015h	位置环前领	位置环前馈增益						
S	ub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit		
	0	INT16	RW	No	0~100	0	%		

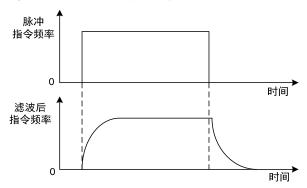
- 前馈可减小位置控制时的位置跟踪误差,设置为 100 时,任何频率的指令脉冲下, 位置跟踪误差总是 0。
- 参数值增大,使位置控制响应提高,过大会使系统不稳定,容易产生振荡。

P022	Index 2016h	位置环前领	位置环前馈滤波时间常数						
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit		
	0	INT16	RW	No	0.20~50.00	1.00	ms		

● 对位置环前馈量的滤波,作用是增加前馈控制的稳定性。

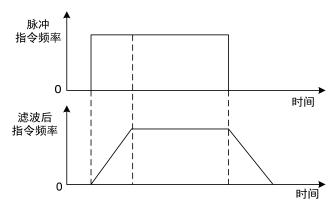
P023	Index 无	速度环前馈增益					
Sub Index		Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
0		INT16	RW	No	0~100	0	%

● 参数值增大, 使速度控制响应提高, 过大会导致系统不稳定, 容易产生振荡。


P024 Index 无	速度环前馈滤波时间常数					
Sub Index	Data	Access	PDO	Setting	Initial	Unit
Sub Ilidex	Type		Mapping	Range	Value	
0	INT16	RW	No	$0.20{\sim}50.00$	1.00	ms

● 对速度环前馈量的滤波,作用是增加前馈控制的稳定性。

P040	Index 无	位置指令指数平滑滤波时间					
Sub Index		Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
0		INT16	RW	No	0~1000	0	ms


- 对指令脉冲进行平滑滤波,具有指数形式的加减速。滤波器不会丢失输入脉冲,但会出现指令延迟现象,当设置为0时,滤波器不起作用。
- 此滤波器用于:

- 1. 上位控制器无加减速功能;
- 2. 电子齿轮比较大(N/M>10);
- 3. 指令频率较低;
- 4. 电机运行时出现步进跳跃、不平稳现象。

P041 Index 无	位置指令线性滤波时间						
Sub Index	Data	Access	PDO	Setting	Initial	Unit	
Sub maex	Type		Mapping	Range	Value		
0	INT16	RW	No	0~256	0	ms	

- 对指令脉冲进行平滑滤波,具有线性形式的加减速。滤波器不会丢失输入脉冲,但会出现指令延迟现象,当设置为0时,滤波器不起作用。参数值表示由0频率上升到100%的位置指令频率的时间。
- 此滤波器用于:
 - 1. 上位控制器无加减速功能;
 - 2. 电子齿轮比较大(N/M>10);
 - 3. 指令频率较低;
 - 4. 电机运行时出现步进跳跃、不平稳现象。

P042	Index 202Ah	CWL, CCV	CWL, CCWL 方向禁止的方式						
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit		
	0	INT16	RW	No	0~1	1			

● 当机械碰到机械限位开关,触发 CWL、CCWL 限制时,本参数用于选择禁止的方

式。

- 参数意义:
 - 0: 限制该方向的转矩为0
 - 1: 禁止该方向的脉冲输入

P060	Index 203Ch	速度指令加	速度指令加速时间						
Su	ıb Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit		
	0	INT16	RW	No	0~30000	500	ms		

- 设置电机从零速到额定速度的加速时间。
- 如果指令速度比额定速度低,则需要的加速时间也相应缩短。
- 仅用于速度控制方式,位置控制方式无效。
- 如果驱动器工作在速度模式,由上位机(PLC等)执行位置闭环控制,此参数应设置为0,否则影响位置控制性能。

额定速度速度指令实际加速时间P060P061

P061	Index 203Dh	速度指令》	速度指令减速时间						
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit		
	0	INT16	RW	No	0~30000	1000	ms		

- 设置电机从额定速度到零速的减速时间。
- 如果指令速度比额定速度低,则需要的减速时间也相应缩短。
- 仅用于速度控制方式,位置控制方式无效。
- 如果驱动器与外部位置环组合使用,此参数应设置为0,否则影响位置控制性能。

P063	Index 无	EMG(紧急停机)的减速时间							
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit		
	0	INT16	RW	No	0~10000	1000	ms		

- 当 EMG(紧急停机)方式为减速停止时(P164=2)起作用。
- 设置 EMG(紧急停机)电机从当前速度到零速的减速时间。

P064 Index 无	转矩限制选择							
Sub Index	Data	Access	PDO	Setting	Initial	Unit		
	Type		Mapping	Range	Value			
0	INT16	RW	No	0~3	3			

● 设置转矩限制模式:

P064	说明	正转(CCW)	反转(CW)
0		由 DI 输入 TCCW 决定,	由 DI 输入 TCW 决定,
1	基本限制	TCCW=OFF:参数 P065	TCW=OFF:参数 P066
2		TCCW=ON:参数 P067	TCW=ON:参数 P068
3	0x60 对象控制	除基本控制外,还受对象 0x6 限制。	6072, 0x60E0, 0x60E2 的

- 注: 1.如有多个限制发生,最终限制值是绝对值较小的数值。
 - 2.P065 和 P066 的限制是任何时候都有效的。
 - 3.即使设置值超过系统允许的最大转矩,实际转矩也会限制在最大转矩以内。

P065	Index 2041h	内部正转(内部正转(CCW)转矩限制						
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit		
	0	INT16	RW	No	0~500	300	%		

- 设置电机 CCW 方向的内部转矩限制值。
- 任何时候,这个限制都有效。
- 如果设置值超过系统允许的最大过载能力,则实际限制为系统允许的最大过载能力。

P066	Index 2042h	内部反转(内部反转(CW)转矩限制						
Sub Index		Data	A	PDO	Setting	Initial	Unit		
		Type	Access	Mapping	Range	Value	Ollit		
	0	INT16	RW	No	- 500∼0	-300	%		

- 设置电机 CW 方向的内部转矩限制值。
- 任何时候,这个限制都有效。
- 如果设置值超过系统允许的最大过载能力,则实际限制为系统允许的最大过载能力。

P067	Index 2043h	外部正转(外部正转(CCW)转矩限制						
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit		
	0	INT16	RW	No	0~500	100	%		

- 设置驱动器电机 CCW 方向的外部转矩限制值。
- 仅在 DI 输入的 TCCW(正转转矩限制)ON 时,这个限制才有效。
- 当限制有效时,实际转矩限制为系统允许的最大过载能力、内部正转转矩限制、 外部正转转矩限制三者中的最小值。

P068	Index 2044h	外部反转	外部反转(CW)转矩限制						
Sub Index		Data	A 22222	PDO	Setting	Initial	Unit		
		Type	Access	Mapping	Range	Value	Oilit		
	0	INT16	RW	No	- 500∼0	-100	%		

● 设置驱动器电机 CW 方向的外部转矩限制值。

第5章 参数

- 仅在 DI 输入的 TCW(反转转矩限制)ON 时,这个限制才有效。
- 当限制有效时,实际转矩限制为系统允许的最大过载能力、内部反转转矩限制、 外部反转转矩限制三者中的最小值。

P069	Index 无	试运行转统	试运行转矩限制						
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit		
	0	INT16	RW	No	0~300	100	%		

- 设置试运行方式(速度 JOG 运行、键盘调速、演示方式)下的转矩限制值。
- 与旋转方向无关,正转反转都限制。
- 内外部转矩限制仍然有效。

P070	Index 2046h	正转(CCW	正转(CCW)转矩过载报警水平					
Sub Index		Data	Access	PDO	Setting	Initial	Unit	
		Type		Mapping	Range	Value		
	0	INT16	RW	No	0~300	300	%	

- 设置正转(CCW)转矩过载值,该值为额定转矩的百分率。
- 当电机正转转矩超过 P070, 持续时间大于 P072 情况下, 驱动器报警, 报警号为 Er 29, 电机停转。

P071	Index 2047h	反转(CW)转矩过载报警水平					
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
	0	INT16	RW	No	- 300∼0	-300	%

- 设置反转(CW)转矩过载值,该值为额定转矩的百分率。
- 当电机反转转矩超过 P071, 持续时间大于 P072 情况下, 驱动器报警, 报警号为 Er 29, 电机停转。

P072	Index 2048h	转矩过载技	转矩过载报警检测时间					
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RW	No	0~10000	0	10ms	

- 参考参数 P070 和 P071 的说明。
- 设置为0时,屏蔽转矩过载报警。

P074	Index 204Ah	回零停止机	回零停止模式的加减速时间					
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RW	No	0~10000	150	100ms	

● 0 为关闭

P075	Index 204Bh	最高速度降	最高速度限制						
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit		
	0	INT16	RW	No	0~25000	8000	r/min		

- 设置驱动器电机的允许的最高限度。
- 与旋转方向无关。
- 如果设置值超过系统允许的最大速度,实际速度也会限制在最大速度以内。

P076	Index 无	JOG 运行法	JOG 运行速度					
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RW	No	0~7500	100	r/min	

● 设置 JOG 操作的运行速度。

P078	Index 204Eh	转矩控制印	转矩控制时速度限制					
Sub Index Data Type Acce		Access	PDO Mapping	Setting Range	Initial Value	Unit		
	0	INT16	RW	No	0~5000	3000	r/min	

- 在转矩控制时,电机运行速度限制在本参数以内。
- 可防止轻载出现超速现象。
- 出现超速时,接入速度负反馈来减小实际转矩,但实际转速会略高于限速值。

P080 Index 2050h	位置超差	位置超差检测						
Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit		
0	INT16	RW	No	0.00~ 327.67	200.00	卷		

- 设置位置超差报警检测范围。
- 在位置控制方式下,当位置偏差计数器的计数值超过本参数值对应的脉冲时,主轴驱动器给出位置超差报警(Er 4)。
- 单位是圈,乘以编码器的每圈分辨率,可得到脉冲数。如果用 2500 线编码器,则编码器的每圈分辨率是 10000,参数值为 4.00 时,对应 40000 个编码器脉冲。

P083	Index 无	动态制动构	动态制动模式					
Sub Index		Data	Access	PDO	Setting	Initial	Unit	
2	oub maex	Type	Access	Mapping	Range	Value	Omi	
	0	INT16	RW	No	0~1	0		

- 参数意义:
 - 0: 不使用动态制动
 - 1: 使用动态制动

P084	Index 2054h	制动电阻选择开关					
S	ub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
	0	INT16	RW	No	0~1	1	

- 0: 采用内部制动电阻
- 1: 采用外部制动电阻

P085	Index 2055h	外接制动	外接制动电阻的阻值					
Sub Index		Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RW	No	1~750	50	Ω	

- 根据实际外接制动电阻的阻值来设定此参数。
- 若采用内部制动电阻(P084=0),则此参数无效。

P086	Index 2056h	外接制动	外接制动电阻的功率					
Sub Index		Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RW	No	1~10000	60	W	

- 根据实际外接制动电阻的功率来设定此参数。
- 若采用内部制动电阻(P084=0),则此参数无效。

P088	Index 2058h	主编码器厂家						
Sub Index		Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RW	No	0~31	0		

● 参数意义:

- 0: 自动识别
- 1: 多摩川 2.5M, 17/23Bit
- 6: 磁编码器

P089	Index 2059h	次编码器厂家						
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RW	No	1~31	11		

- 1: 多摩川 2.5M, 17/23Bit
- 6: 磁编码器
- 11: ABZ 增量式编码器
- 次编码器不能设置成自动识别。

P090	Index 205Ah	主绝对值组	主绝对值编码器类型						
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit		
	0	INT16	RW	No	0~3	0			

- 0: 单圈绝对值编码器
- 1: 多圈绝对值编码器
- 2: 增量式使用
- 3: 自定义多圈
- 当编码器没有外接电池时,编码器无法保存多圈信息,请将此参数设为0。

P091	Index 无	次绝对值统	次绝对值编码器类型						
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit		
	0	INT16	RW	No	0~2	0			

● 参数意义:

- 0: 单圈绝对值编码器
- 1: 多圈绝对值编码器
- 2: 增量式使用

P092	Index 无	第三编码器厂家						
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RW	No	0~1	0		

● 参数意义:

- 0: 脉冲编码器
- 1: 霍尔传感器

P094 Index	205Eh	风扇开启温度点						
Sub Index		Data	Access	PDO	Setting	Initial	Unit	
		Type		Mapping	Range	Value		
0		INT16	RW	No	25~125	50	${\mathbb C}$	

- 当功率模块温度>P094的值时,驱动器散热风扇开始工作。
- 当功率模块温度<P094的值时,驱动器散热风扇停止工作。
- 当 P094=25℃时,驱动器散热风扇会一直工作。

P095	Index 无	演示运行种类						
Sub Index		Data	Access	PDO	Setting	Initial	Unit	
		Type	Type Access	Mapping	Range	Value	Omi	
	0	INT16	RW	No	0~2	0		

● 参数意义:

0: 标准运行

- 1: 低速运行
- 2: 自定义, 由 JOG 速度决定

P096 Index 无	初始显示项目						
Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
0	INT16	RW	No	0~35	29		

- 驱动器上电后显示器的显示状态。
- 参数意义:

P096	显示项目	P096	显示项目	P096	显示项目
0	电机速度	12	保留	24	母线电压
1	原始位置指令	13	保留	25	保留显示
2	位置指令	14	数字输入 DI	26	模块内部温度
3	电机位置	15	数字输出 DO	27	编码器多圈位置
4	位置偏差	16	保留	28	历史报警代码显示
5	转矩	17	一转中的绝对位置	29	EtherCAT 状态显示
6	峰值转矩	18	累计负载率	30	主编码器绝对位置
7	电流	19	制动负载率	31	第二编码器绝对位置
8	峰值电流	20	控制方式	32	第三编码器绝对位置
9	脉冲输入频率	21	报警号	33	编码器Z信号显示
10	速度指令	22	保留显示	34	以Z信号为基准的机械
10	<u></u> (本)又1日 マ	22		34	角度
11	转矩指令	23	负载惯量比,保留	35	龙门状态,保留

P097	Index 2061h	忽略驱动禁止					
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
	0	INT16	RW	No	0~3	3	

- DI 输入中的正转驱动禁止(CCWL)和反转驱动禁止(CWL)用于极限行程保护,采用常闭开关,输入为 ON 时电机才能向该方向运行,OFF 时,不能向该方向运行。若不使用极限行程保护,可通过本参数忽略,这样可不接入驱动禁止信号就能运行。
- 缺省值是忽略驱动禁止,若需要使用驱动禁止功能,请先修改本数值。
- 参数意义:

P097	反转驱动禁止 (CWL)	正转驱动禁止 (CCWL)		
0	使用	使用		
1	使用	忽略		
2	忽略	使用		
3	忽略	忽略		

使用:输入信号 ON 时,电机可向该方向运行; OFF 时电机不能向该方运行。 忽略:电机可向该方向运行,该驱动禁止信号无作用,可不接入该信号。

P098	Index 无	强制使能						
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RO	No	0~1	0		

- P098 参数在联网模式时无效, Fn-2 长按, 进入普通模式时有效。
- 参数意义:
 - 0: 使能由 DI 输入的 SON 控制;
 - 1: 软件强制使能。

5.4.2 1段参数

P100	Index 2064h	数字输入	数字输入 DI1 功能						
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit		
	0	INT16	RW	No	-46~46	24			

- 数字输入 DI1 功能规划,参数绝对值表示功能,符号表示逻辑,功能请参考 5.5 章节。
- 符号表示输入逻辑,正数表示正逻辑,负数表示负逻辑,ON 为有效,OFF 为无效:

参数值	DI 输入信号	DI结果
正数	开路	OFF
上级	导通	ON
负数	开路	ON
火剱	导通	OFF

- 当多个输入通道功能选择一样时,功能结果为逻辑或关系。例如 P100 和 P101 都 设置为 1(SON 功能),则 DI1、DI2 任何一个 ON 时,SON 有效。
- 没有被参数 P100~P103 选中的输入功能,即未规划的功能,结果为 OFF(无效)。 但有例外情况,设置参数 P120~P127 可以强制输入功能 ON(有效),不管该功能规划与否。

P101	Index 2065h	数字输入	数字输入 DI2 功能						
Sub Index		Data	Access	PDO	Setting	Initial	Unit		
		Type	110000	Mapping	Range	Value	o mi		
	0	INT16	RW	No	-46~46	2			

● 数字输入 DI2 功能规划,参考参数 P100 的说明。

P102	Index 2066h	数字输入	数字输入 DI3 功能						
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit		
	0	INT16	RW	No	-46~46	3			

● 数字输入 DI3 功能规划,参考参数 P100 的说明。

P103	Index 2067h	数字输入	数字输入 DI4 功能							
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit			
	0	INT16	RW	No	-46~46	4				

● 数字输入 DI4 功能规划,参考参数 P100 的说明。

P110	Index 206Eh	数字输入	数字输入 DI1 滤波							
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit			
	0	INT16	RW	No	$0.1 \sim 100.0$	2.0	ms			

- DI1 输入的数字滤波时间常数。
- 参数值越小,信号响应速度越快;参数值越大,信号响应速度越慢,但滤除噪声能力越强。

P111	Index 206Fh	数字输入	数字输入 DI2 滤波							
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit			
	0	INT16	RW	No	$0.1 \sim 100.0$	2.0	ms			

● DI2 输入的数字滤波时间常数。参考参数 P110 的说明。

P112	Index 2070h	数字输入	数字输入 DI3 滤波						
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit		
	0	INT16	RW	No	$0.1 \sim 100.0$	2.0	ms		

● DI3 输入的数字滤波时间常数。参考参数 P110 的说明。

P113	Index 2071h	数字输入	数字输入 DI4 滤波							
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit			
	0	INT16	RW	No	0.1~100.0	2.0	ms			

● DI4 输入的数字滤波时间常数。参考参数 P110 的说明。

P118	Index 无	数字高速轴	数字高速输入 HDI1 滤波							
S	ub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit			
	0	INT16	RW	No	1~8	4				

● 参数意义:

1~8: 从低到高,滤波能力加强。

P119	Index 无	数字高速轴	数字高速输入 HDI2 滤波							
Sub Index		Data	A 22233	PDO	Setting	Initial	Unit			
3	Sub maex	Type	Access	Mapping	Range	Value	Omi			
	0	INT16	RW	No	1~8	4				

● 参数意义:

1~8: 从低到高,滤波能力加强。

P120	Index 2078h	数字输入	数字输入 DI 强制有效 1						
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit		
	0	INT16	RW	No	00000~11111	00000			

● 对应功能由 5 位二进制表示:

数位	bit4	bit3	bit2	bit1	bit0
对应功能	CWL	CCWL	ARST	SON	NULL

- 用于强制 DI 输入的功能有效。如果功能对应位设置为 1,则该功能强制 ON (有效)。
- DI 符号的意义参考 5.5 章节。
- 参数意义:

本参数中某一位	对应功能[注]	功能结果
0	未规划	OFF
U	已规划	由输入信号决定
1	未规划或已规划	ON

注:已规划是指被参数 P100~P103 选中的功能; 未规划是指没有被参数 P100~P103 选中的功能。

		, ,,	0 + 1 + 10 + 2		_ , ,,,,,,,		
P121	Index 2079h	数字输入 DI 强制有效 2					
	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
	0	INT16	RW	No	00000~11111	00000	

● 对应功能由5位二进制表示:

数位	bit4	bit3	bit2	bit1	bit0
对应功能	CINV	CZERO	ZCLAMP	TCW	TCCW

● 其他参考参数 P120 的说明。

	7 (12) 30 //(
P122	Index 207Ah	数字输入	数字输入 DI 强制有效 3					
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RW	No	00000~11111	00000		

● 对应功能由 5 位二进制表示:

数位	bit4	bit3	bit2	bit1	bit0
对应功能	TRQ2	TRQ1	SP3	SP2	SP1

● 其他参考参数 P120 的说明。

P123	Index 207Bh	数字输入 DI 强制有效 4					
S	Sub Index	Data	Access	PDO	Setting	Initial	Unit
2 00 1110011		Type		Mapping	Range	Value	
	0	INT16	RW	No	00000~11111	00000	

● 对应功能由 5 位二进制表示:

数位	bit4	bit3	bit2	bit1	bit0
对应功能	GEAR2	GEAR1	GAIN	CMODE	EMG

● 其他参考参数 P120 的说明。

P124	Index 207Ch	数字输入 DI 强制有效 5					
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
	0	INT16	RW	No	00000~11111	00000	

● 对应功能由 5 位二进制表示:

数位	bit4	bit3	bit2	bit1	bit0
对应功能	REF	GOH	PC	INH	CLR

● 其他参考参数 P120 的说明。

P125	Index 无	数字输入 DI 强制有效 6					
	Sub Index	Data	Access	PDO	Setting	Initial	Unit
L.	out macx	Type	Access	Mapping	Range	Value	Oiiit
	0	INT16	RW	No	00000~11111	00000	

● 对应功能由 5 位二进制表示:

数位	bit4	bit3	bit2	bit1	bit0
对应功能	保留	保留	保留	保留	保留

● 其他参考参数 P120 的说明。

P126	Index 无	数字输入 DI 强制有效 7					
3	Sub Index	Data Type	Access PDO Setting Initial Mapping Range Value			Unit	
0 INT16 RW		RW	No	00000~11111	00000		

● 对应功能由 5 位二进制表示:

数位	bit4	bit3	bit2	bit1	bit0
对应功能	保留	保留	保留	保留	保留

● 其他参考参数 P120 的说明。

P12	7 Index 无	数字输入 DI 强制有效 8					
	Sub Index	Data Type	Access PDO Setting Initial Napping Range Value			Unit	
	0	INT16	RW	No	00000~11111	00000	

● 对应功能由5位二进制表示:

数位	bit4	bit3	bit2	bit1	bit0
对应功能	保留	保留	保留	保留	保留

● 其他参考参数 P120 的说明。

P130	Index 2082h	数字输出 DO1 功能					
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
	0	INT16	RW	No	-33~33	2	

- 数字输出 DO1 功能规划,参数绝对值表示功能,符号表示逻辑,功能请参考 5.6 章节。
- 0 为强制 OFF, 1 为强制 ON。
- 符号代表输出逻辑,正数表示正逻辑,负数表示负逻辑:

参数值	对应功能	DO 输出信号
正数	ON	导通
上级	OFF	截止
负数	ON	截止
火剱 	OFF	导通

P131	Index 2083h	数字输出 DO2 功能					
Sub Index		Data Type	Access	PDO	Setting	Initial	Unit
2	Suo macx		7100055	Mapping	Range	Value	Cint
	0	INT16	RW	No	-33~33	3	

● 数字输出 DO2 功能规划,参考参数 P130 的说明。

P132 Index 2084h	数字输出 DO3 功能					
Sub Index	Data	Aggaga	PDO	Setting	Initial	Unit
Sub Index	Type	Access	Mapping	Range	Value	Unit
0	INT16	RW	No	-33~33	8	

● 数字输出 DO3 功能规划,参考参数 P130 的说明。

P138	Index 无	数字输出 DO 强制选择 1						
Sub Index		Data	A 22222	PDO	Setting	Initial	I Imit	
		Type	Access	Mapping	Range	Value	Unit	
	0	INT16	RW	No	0~7	0		

● 对应功能由 5 位二进制表示:

数位	bit4	bit3	bit2	bit1	bit0
对应功能	保留	保留	DO3	DO2	DO1

- 用于选择 DO 输出的强制有效。
 - 1: 该 DO 输出强制 ON 和强制 OFF 由 P139 设定。
 - 0: 该 DO 正常输出。

P139	Index 无	数字输出 DO 强制内容 1						
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RW	No	0~7	0		

● 对应功能由 5 位二进制表示:

数位	bit4	bit3	bit2	bit1	bit0
对应功能	保留	保留	DO3	DO2	DO1

- 1: 表示对应 DO 输出强制 ON (有效), P138 参数对应 Bit 位设置 1 时生效。
- 0: 表示对应 DO 输出强制 OFF (无效), P138 参数对应 Bit 位设置 1 时生效。

I	P149	Index 无	动态制动致	动态制动延迟时间				
	S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
Ī		0	INT16	RW	No	30~1000	100	ms

● 参数意义:

动态制动延时时间,设置为0时,动态制动功能无效。

P150	Index 无	定位完成落	定位完成范围				
	Sub Index	Data	Access	PDO	Setting	Initial	Unit
		Type		Mapping	Range	Value	
	0	INT16	RW	No	$0\sim$ 32767	10	脉冲

- 设定位置控制下定位完成脉冲范围。
- 当位置偏差计数器内的剩余脉冲数小于或等于本参数设定值时,数字输出 DO 的 COIN(定位完成)ON,否则 OFF。
- 比较器具有回差功能,由参数 P151 设置。

P151	Index 无	定位完成	定位完成回差					
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RW	No	0~32767	5	脉冲	

参考参数 P150 的说明。

P152	Index 无	定位接近落	定位接近范围					
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RW	No	0~32767	500	脉冲	

- 设定位置控制下定位接近脉冲范围。
- 当位置偏差计数器内的剩余脉冲数小于或等于本参数设定值时,数字输出 DO 的 NEAR(定位附近)ON,否则 OFF。比较器具有回差功能,由参数 P153 设置。
- 用于在即将定位完成时,上位机接受 NEAR 信号对下一步骤进行准备。一般参数 值要大于 P150。

P153	Index 无	定位接近	定位接近回差				
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
	0	INT16	RW	No	0~32767	50	脉冲

● 参考参数 P152 的说明。

P154 Index 无	到达速度					
Sub Index	Data	Access	PDO	Setting	Initial	Unit
Sub maex	Type	Access	Mapping	Range	Value	Omi
0	INT16	RW	No	-5000~5000	500	r/min

- 电机速度超过本参数时,数字输出 DO 的 ASP (速度到达) ON, 否则 OFF。
- 比较器具有回差功能,由参数 P155 设置。
- 具有极性设置功能:

P156	P154	比较器
0	>0	速度不分方向
1	>0	仅检测正转速度
1	<0	仅检测反转速度

P155 Index 无	到达速度[到达速度回差					
Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
0	INT16	RW	No	0~5000	30	r/min	

● 参考参数 P154 的说明。

P156	Index 无	到达速度构	到达速度极性				
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
	0	INT16	RW	No	0~1	0	

● 参考参数 P154 的说明。

P157	Index 无	到达转矩	到达转矩					
Sub Index		Data	Access	PDO	Setting	Initial	Unit	
		Type		Mapping	Range	Value		
	0	INT16	RW	No	-300~300	100	%	

- 电机转矩超过本参数时,数字输出 DO 的 ATRQ (转矩到达) ON, 否则 OFF。
- 比较器具有回差功能,由参数 P158 设置。
- 具有极性设置功能:

P159	P157	比较器
0	>0	转矩不分方向
1	>0	仅检测正转转矩
1	<0	仅检测反转转矩

P158 Index 无	到达转矩[到达转矩回差					
Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
0	INT16	RW	No	0~300	5	%	

● 参考参数 P157 的说明。

P159	Index 无	到达转矩构	到达转矩极性					
S	Sub Index	Data Type	Access		Setting Range	Initial Value	Unit	
	0	INT16	RW	No	0~1	0		

● 参考参数 P157 的说明。

P160	Index 20A0h	零速检测点						
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RW	No	0~1000	10	r/min	

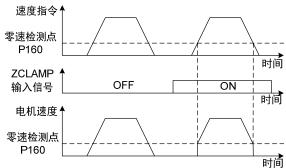
- 电机速度低于本参数时,数字输出 DO 的 ZSP (零速) ON,否则 OFF。
- 比较器具有回差功能,由参数 P161 设置。

P161	Index 20A1h	零速检测	零速检测回差					
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RW	No	0~1000	5	r/min	

● 参考参数 P160 的说明。

P162	Index 20A2h	零速箝位模式						
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RW	No	0~1	0		

● 当下列条件满足时,零速箝位功能开启:


条件1:速度控制模式

条件 2: DI 中的 ZCLAMP(零速箝位)ON

条件 3: 速度指令低于参数 P160

● 上述任一条件不满足时,执行正常速度控制。

- 在零速箝位功能开启时,本参数意义为:
 - **0**: 电机位置被固定在功能开启的瞬间。此时内部接入位置控制,即使因外力发生了旋转,也会返回零位固定点。
 - 1: 功能开启时速度指令强制为零速。内部仍然是速度控制,可能会因外力发生旋转。

P163	Index 20A3h	位置偏差剂	位置偏差清除方式				
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
	0	INT16	RW	No	0~1	0	

- 位置控制时,清除位置偏差计数器,使用 DI 中的 CLR(位置偏差清除)。
- 参数意义,位置偏差清除发生在:
 - 0: CLR ON 电平
 - 1: CLR 上沿(OFF 变 ON 瞬间)

P164	Index 20A4h	紧急停机的	紧急停机的方式					
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RW	No	0~2	0		

- 当 DI 中的 EMG(紧急停机)ON 时,本参数意义为:
 - 0: 驱动器直接切断电机电流, 电机自由停止;
 - 1: 驱动器保持使能状态,控制电机以 6085h (Quick stop deceleration) 所定义的加减速停止。
 - 2: 减速停机,减速时间由 P063 决定。

P165	Index 20A5h	电机静止证	电机静止速度检测点					
Sub Index		Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RW	No	0~1000	5	r/min	

- 电机静止检测,电机速度低于参数值认为电机静止。
- 仅用于电磁制动器时序判断。

P166	Index 20A6h	电机静止	电机静止时电磁制动器延时时间					
Sub Index Data Type Access		Access	PDO Mapping	Setting Range	Initial Value	Unit		
	0	INT16	RW	No	0~2000	150	ms	

- 当系统从使能状态变化到不使能或发生报警时,定义电机静止期间从电磁制动器制动(DO输出端子BRK OFF)到电机电流切断的延时时间。
- 此参数是使制动器可靠制动后再切断电流,避免电机的微小位移或工件跌落。参数不应小于机械制动的延迟时间。
- 相应时序参见 4.9.3 章节。

	P167	Index 20A7h	电机运转	电机运转时电磁制动器等待时间						
Sub Index Data Type Access			Access	PDO Mapping	Setting Range	Initial Value	Unit			
		0	INT16	RW	No	0~2000	0	ms		

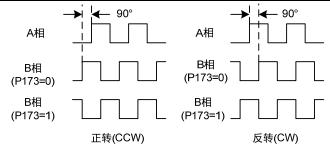
- 当系统从使能状态变化到不使能或发生报警时,定义电机运转期间从电机电流切断到电磁制动器制动(DO输出端子BRK OFF)的延时时间。
- 此参数是使电机从高速旋转状态减速为低速后,再让制动器制动,避免损坏制动器。
- 实际动作时间是 P167 或电机减速到 P168 数值所需时间,取两者中的最小值。
- 相应时序参见 4.9.4 章节。

P168	Index 20A8h	电机运转	电机运转时电磁制动器动作速度						
Sub Index Data Type Acce		Access	PDO Mapping	Setting Range	Initial Value	Unit			
	0	INT16	RW	No	0~3000	100	r/min		

● 参考参数 P167 的说明。

P169	Index 20A9h	电磁制动器	电磁制动器打开的延迟时间					
Sub Index		Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RO	No	0~1000	0	ms	

- 当系统从不使能状态变化到使能状态时,定义电机电流开通到电磁制动器松开 (DO 输出端子 BRK ON)的延时时间。
- 相应时序参见 4.9 章节。


P172	Index 无	编码器输出线数					
Sub Index		Data	Agggg	PDO	Setting	Initial	Unit
,	Sub Ilidex	Type	Access	Mapping	Range	Value	Ollit
	0	INT16	RW	No	1~16384	2500	

- ◆数意义设置参数以确定驱动器输出脉冲的分辨率。
- 默认值为 2500,表示电机轴每转一圈,输出 2500×4=10000 个脉冲。

P173	Index 无	编码器输出	编码器输出 B 脉冲相位					
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RW	No	0~1	0		

- 0: 同相
- 1: 反相
- 此参数可以调整 B 相信号和 A 相信号的相位关系。

P173	电机正转(CCW)	电机反转(CW)
0	A 相滞后 B 相 90 度	A 相超前 B 相 90 度
1	A 相超前 B 相 90 度	A 相滞后 B 相 90 度

P174	Index 无	编码器输出	编码器输出 Z 脉冲相位					
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RW	No	0~1	0		

● 参数意义:

- 0: 同相
- 1: 反相

P175	Index 无	编码器输出	编码器输出Z脉冲宽度					
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RW	No	0~1	0		

- 0: 宽度为参数值乘以输出 A(或 B)信号的 1 倍宽度;
- 1: 宽度为参数值乘以输出 A(或 B)信号的 4 倍宽度。
- 对 Z 脉冲进行展宽。当上位设备不能捕获较窄的 Z 脉冲,可对其展宽。注意最好使用 Z 脉冲前沿。

P176 Index 无	到达转矩窗口						
Cub Indov	Data	Access	PDO	Setting	Initial	Unit	
Sub Index	Type		Mapping	Range	Value	Unit	
0	INT16	RW	No	0~3000	0	%	

P177	Index 无	到达转矩窗口时间						
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RW	No	0~32767	0	ms	

P190	Index 无	原点位置偏移角度					
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
	0	INT16	RW	No	0.0~360.0	0.0	0

P191 Index 无	对象 606D	对象 606D 速度到达窗口倍数						
Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit		
0	J 1	DW	11 0	8	1			
U	INT16	RW	No	$1\sim 32767$	1			

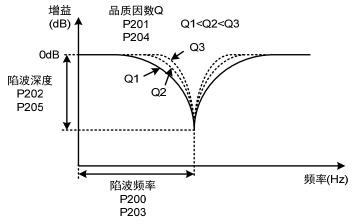
P193	Index 无	录波模式						
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RW	No	0~1	0		

- 0: 连续录波
- 1: 触发录波

P195	Index 无	编码器多图	编码器多圈溢出报警屏蔽					
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RW	0~1	1			

● 参数意义:

- 0: 编码器多圈计数溢出报警出现时,驱动器按照报警处理
- 1: 编码器多圈计数溢出报警出现时,驱动器正常工作


P198	Index 无	录波设置					
Sub Index		Data	Access	PDO	Setting	Initial	Unit
		Type	7100055	Mapping	Range	Value	Cint
	0	INT16	RW	No	$0\sim$ 2	0	

- 0: 过电子齿轮和滤波前原始指令脉冲
- 1: 电子齿轮后位置指令脉冲
- 2: 电子齿轮和滤波后位置指令脉冲

5.4.3 2 段参数

P200	Index 20C8h	第1共振降	第1共振陷波器频率						
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit		
	0	INT16	RW	No	50~5000	5000	Hz		

- 陷波器是用来消除因机械引起的特定频率共振的滤波器。
- 若参数 P202 设置为 0 则关闭此陷波器。

P201 Index 20C9h	第1共振	第1共振陷波器品质因数				
Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
0	INT16	RW	No	1~100	7	

● 品质因数 Q 表示陷波器形状, Q 越大陷波器形状越尖锐, 陷波宽度 (-3dB) 越窄。

品质因数
$$Q = \frac{陷波频率}{陷波宽度}$$

P202 I	ndex 20CAh	第1共振降	第1共振陷波器深度				
Sub	o Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
	0	INT16	RW	No	0~60	0	dB

- 设置陷波器陷波深度,参数越大,陷波深度越大,即滤波器增益衰减越大。设置 为0表示关闭陷波器。
- 用 dB 单位表示的陷波深度 D 为:

$$D = -20\log(1 - \frac{P202}{100})(dB)$$

[dB]	输入								
表示	输出比								
0	1	-13	0.224	-26	0.050	-39	0.011	-52	0.003
-1	0.891	-14	0.200	-27	0.045	-40	0.010	-53	0.002
-2	0.794	-15	0.178	-28	0.040	-41	0.009	-54	0.002
-3	0.708	-16	0.158	-29	0.035	-42	0.008	-55	0.002
-4	0.631	-17	0.141	-30	0.032	-43	0.007	-56	0.002
-5	0.562	-18	0.126	-31	0.028	-44	0.006	-57	0.001
-6	0.501	-19	0.112	-32	0.025	-45	0.006	-58	0.001
-7	0.447	-20	0.10	-33	0.022	-46	0.005	-59	0.001
-8	0.398	-21	0.089	-34	0.020	-47	0.004	-60	0.001
-9	0.355	-22	0.079	-35	0.018	-48	0.004		
-10	0.316	-23	0.71	-36	0.016	-49	0.004		
-11	0.282	-24	0.063	-37	0.014	-50	0.003		
-12	0.251	-25	0.056	-38	0.013	-51	0.003		

P203	Index 20CBh	第2共振降	第2共振陷波器频率				
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
	0	INT16	RW	No	50~5000	5000	Hz

- 陷波器是用来消除因机械引起的特定频率共振的滤波器。
- 若 P205 设置为 0 则关闭此陷波器。

P204	Index 20CCh	第2共振	第2共振陷波器品质因数				
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
	0	INT16	RW	No	1~100	7	

● 参考参数 P201 的说明。

	P205 Ind	lex 20CDh	第2共振	第2共振陷波器深度				
	Sub Index		Data	Access	PDO	Setting	Initial	Unit
			Type	7100033	Mapping	Range	Value	Omt
	C)	INT16	RO	No	0~60	0	dB

● 设置陷波器陷波深度,设置为 0 表示关闭陷波器。其他参考 P202 说明。

P206	Index 无	第2转矩滤波器频率					
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
	0	INT16	RW	No	100~5000	5000	Hz

● 第2转矩滤波器(二阶类型)的截止频率,作用同第一转矩指令滤波器。

P207 Index 无	第2转矩》	第2转矩滤波器品质因数				
Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
0	INT16	RW	No	1~100	50	

● 第2转矩滤波器(二阶类型)的品质因数,作用同第一转矩指令滤波器。

P208	Index 无	增益切换过	增益切换选择				
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
	0	INT16	RW	No	0~15	0	

- 0: 固定第1增益。
- 1: 固定第2增益。
- 2~3: 保留。
- 4: 脉冲偏差控制,位置脉冲偏差超过 P209 时切换为第 2 增益。
- 5: 电机转速控制, 电机速度超过 P209 时切换为第 2 增益。
- 第1增益和第2增益是组合形式,每组4个参数,同时切换。

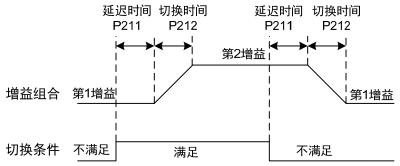
		- , -	
	第1增益		第2增益
参数	名称	参数	名称
P005	第1速度环增益	P010	第2速度环增益
P006	第1速度环积分时间常数	P011	第2速度环积分时间常数
P007	第1转矩滤波时间常数	P012	第2转矩滤波时间常数
P009	第1位置环增益	P013	第2位置环增益

P209 Index 无	增益切换对	增益切换水平				
Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
0	INT16	RW	No	0~32767	100	

- 根据参数 P208 的设定,切换条件和单位各不同。
- 参数 P210 与 P209 同单位。
- 比较器具有回差功能,由参数 P210 设置。

P208	增益切换条件	单位
3	指令脉冲频率	0.1kHz(kpps)
4	脉冲偏差	pulse
5	电机转速	r/min

P210	Index 无	增益切换水平回差					
S	ub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
	0	INT16	RW	No	0~32767	5	


● 参考参数 P209 的说明。

P211 Index 无	增益切换延迟时间					
Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
0	INT16	RW	No	0~3000	5	ms

- 增益切换条件满足到开始切换的延迟时间。
- 如果在延迟阶段检测到切换条件不满足则取消切换。

P212	Index 无	增益切换田	曾益切换时间				
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
	0	INT16	RW	No	0~3000	5	ms

- 增益切换时,当前增益组合在此时间内线性平滑渐变到目标增益组合,组合内的各个参数同时变化。
- 可避免参数突然变化引起冲击。

P213	Index 无	自动陷波器开启					
Sub Index	Sub Index	Data	Access	PDO	Setting	Initial	Unit
	Type	110003	Mapping	Range	Value	Cint	
	0	INT16	RW	No	0∼FFFF	0	

● 参数说明:

Bit 位	说明					
Bit0	第一陷波器自动设置,0:关闭;1:开启					
Bit1	第二陷波器自动设置,同上					
Bit2	第三陷波器自动设置,同上					
Bit3	第四陷波器自动设置,同上					
	第一陷波器自动设置模式,					
Bit4	0: 自动设置成功后关闭自动设置功能;					
	1: 一直工作					
Bit5	第二陷波器自动设置模式,同上					
Bit6	第三陷波器自动设置模式,同上					
Bit7	第四陷波器自动设置模式,同上					
Bit8~Bit15	保留					

P214	Index 无	第3共振降	第3共振陷波器频率				
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
	0	INT16	RW	No	50~5000	5000	Hz

- 陷波器是用来消除因机械引起的特定频率共振的滤波器。
- 若 P205 设置为 0 则关闭此陷波器。

P215 Index 无	第 3 共振陷波器品质因数					
Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
0	INT16	RW	No	1~100	7	

● 参考参数 P201 的说明。

P216 Index 无	第3共振	第 3 共振陷波器深度				
Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
0	INT16	RW	No	0~60	0	dB

● 设置陷波器陷波深度,设置为 0 表示关闭陷波器。其他参考 P202 说明。

P217 Index 无	第4共振降	第 4 共振陷波器频率				
Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
0	INT16	RW	No	50~5000	5000	Hz

- 陷波器是用来消除因机械引起的特定频率共振的滤波器。
- 若 P205 设置为 0 则关闭此陷波器。

P218	Index 无	第4共振陷波器品质因数					
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
	0	INT16	RW	No	1~100	7	

● 参考参数 P201 的说明。

P219 Index 无	第 4 共振陷波器深度					
Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
0	INT16	RW	No	0~60	0	dB

● 设置陷波器陷波深度,设置为 0表示关闭陷波器。其他参考 P202 说明。

P220 Index 无	端部振动检测滤波器频率					
Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
0	INT16	RW	No	10~2000	200	Hz

● 参数意义:

设置端部振动检测功能所使用的滤波器的滤波带宽频率。

P221 Index 无	端部振动量	端部振动最小检测幅值							
Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit			
0	INT16	RW	No	3~32767	5	脉冲			

• 端部振动最小检测值。

P222	Index 20DEh	端部抑振的补偿系数						
	Sub Indox	Data	Agggg	PDO	Setting	Initial	Unit	
Sub Index	Type	Access	Mapping	Range	Value	Omi		
	0	INT16	RW	No	1.0~100.0	1.0		

- 振动抑制开关打开时有效。
- 数值越大,抑制效果越明显,但是数值太大容易带来机械噪声。

P223	Index 20DFh	端部抑振为	端部抑振开关						
Sub Index		Data	Access	PDO	Setting	Initial	Unit		
		Type	110000	Mapping	Range	Value	O IIIV		
	0	INT16	RW	No	0~3	0			

- 0: 振动抑制功能无效。
- 1: 振动抑制模式 1, 自动检测振动频率, 适用于惯量变化不大场合。
- 2: 振动抑制模式 2, 自动检测振动频率, 适用于惯量始终变化的场合。

3: 振动抑制模式3, 手动设置振动频率, 适合振动频率已知场合。

2001	~ 4 • • • • • • •	Oth Ap to the f	U 가이상 IC IO HU ~ ~ I) U III							
P224	Index 20E0h	端部抑振	端部抑振周期手动设置 							
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit			
	0	INT16	RW	No	0~1000	0	ms			

● 当振动抑制模式(P223)设为3时,此参数用于设置需要抑制的振动周期。

P225	Index 无	摩擦补偿抗	摩擦补偿扰动观测器开关							
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit			
	0	INT16	RW	No	0~1	0				

● 参数意义:

0: 关

1: 开

P226	Index 无	中频振动 1 频率						
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RW	No	50~2000	100	Hz	

- 中频抑振 1 开关打开时有效(P229 不为 0)。
- 频率点手动设置模式(P229=1),需通过驱动器上位机软件录波功能寻找中频振动点。

P227	Index 无	中频抑制	中频抑制 1 的补偿系数							
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit			
	0	INT16	RW	No	1~1000	100	%			

- 建议首先用 Fn1 功能推定负载惯量。
- 若驱动器惯量(P017)设置合适,此参数建议设置为100。
- 若在无法推定惯量情况下,该值与实际负载惯量成反比关系。

P228 Index 无	中频抑制	中频抑制 1 的阻尼系数							
Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit			
0	INT16	RW	No	0~300	100	%			

● 增大阻尼系数可以提高防振效果,但阻尼系数过大反而会增大振动。

P229 Index 无	中频抑振 1 开关						
Cub Indov	Data	A 22222	PDO	Setting	Initial	Unit	
Sub Index	Type	Access	Mapping	Range	Value	Unit	
0	INT16	RW	No	0~2	0		

- 0: 无效
- 1: 手动设置
- 2: 自动设置

P2	Index 无	中频振动 2 频率						
Sub Index	Data	Access	PDO	Setting	Initial	Unit		
	Suo muca	Type	Hecess	Mapping	Range	Value	Omt	
	0	INT16	RW	No	50~2000	100	Hz	

- 中频抑振 2 开关打开时有效(P234 不为 0)。
- 频率点手动设置模式(P234=1),需通过驱动器上位机软件录波功能寻找中频振动点。

P23	2 Index 无	中频抑振	中频抑振 2 的补偿系数							
	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit			
	0	INT16	RW	No	1~1000	100	%			

- 建议首先用 Fn1 功能推定负载惯量。
- 若驱动器惯量(P017)设置合适,此参数建议设置为 100。
- 若在无法推定惯量情况下,该值与实际负载惯量成反比关系。

P233	Index 无	中频抑振	中频抑振 2 的阻尼系数						
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit		
	0	INT16	RW	No	0~300	100	%		

● 增大阻尼系数可以提高防振效果,但阻尼系数过大反而会增大振动。

P234	Index 无	中频抑振	中频抑振 2 开关					
S	ub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RW	No	0~2	0		

- 参数意义:
 - 0: 无效
 - 1: 有效
 - 2: 自动设置

P236	Index 无	速度反馈为	速度反馈来源					
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RW	No	0~1	0		

- 参数意义:
 - 0: 速度反馈来源于滤波器
 - 1: 速度反馈来源于观测器

P237	Index 无	高响应模式	高响应模式下中频抑振模式					
Sub Index		Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RW	No	0~1	1		

- 参数意义:
 - 0: 外部补偿
 - 1: 内部补偿

1 4 1 1 1 1 1 1	-								
P238 Index 无	<u>.</u>	高响应模式	高响应模式下高抗扰性模式增益百分比						
Sub Index		Data Type	Access 5 1						
0		INT16	RW	No	0~1000	50	%		

● 该参数仅在高响应模式下高抗扰性模式使能(P239=2)情况下生效,用于调整高响应模式的增益百分比,一般设置为 20~80 即可满足需要,数值设置过高易引起机械振动情况。

P239 Index 无 高响应模式下高抗扰性模式开关							
Sub Index		Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
	0	INT16	RW	No	0~2	0	

- 该参数用于使能高响应模式下高抗扰性模式。
- 参数意义:
 - 0: 关闭该模式
 - 1: 开启该模式并保持默认增益
 - 2: 增益百分比可调

	111 1111 - 1	•						
P240	Index 无	高响应模式	高响应模式速度环跟踪系数					
S	Sub Index	Data Type	Access					
	0	INT16	RW	No	10~1000	100	%	

● 默认值为 100, 增大该值可改善速度跟随拖尾现象(一般该值设置不超过 120)。

P241 Index 无	摩擦补偿抗	摩擦补偿扰动观测器增益					
Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
0	INT16	RW	No	10~1000	100	Hz	

● 提高观测器增益可更快的对外部扰动进行补偿,但增益过大在机械存在共振频率 时,会产生振动。

P242	Index 无	ndex 无 摩擦补偿扰动观测器补偿系数					
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
	0	INT16	RW	No	0~1000	0	%

● 增大比例可以提高防振效果,但比例过大反而会增大振动。参数设置为 0 时,关 闭摩擦补偿功能。

P243 Index 无 摩擦补偿扰动观测器转矩系数						
Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
0	INT16	RW	No	0~1200	400	%

- 建议首先用 Fn1 功能推定负载惯量。
- 若驱动器惯量(P017)设置合适,此参数建议设置为 100。
- 若在无法推定惯量情况下,该值与实际负载惯量成反比关系。

P2	244 Index 无	高响应模式	高响应模式下电流环模式选择						
	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit		
	0	INT16	RW	No	0~3	0			

- 该参数仅在 P247=1 时生效。
 - 0: 电流环不采用高响应模式
 - 1: 电流环采用高响应模式
 - 2: 电流环使用高响应电流观测器
 - 3: 电流环使用标准电流观测器

			— · · · · · · · · · · · · · · · · · · ·							
P245	Index 无	高响应模式								
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit			
	0	INT16	RW	No	0~1	1				

● 参数意义:

- 0: 高响应模式中非线性函数类型采用结构 0
- 1: 高响应模式中非线性函数类型采用结构 1

			711						
P246	Index 无	高响应模式	式速度反馈						
S	ub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit		
	0	INT16	RW	No	0~1	0			

- 0: 高响应模式中反馈速度来源为原始速度
- 1: 高响应模式中反馈速度来源为滤波后速度

P247 Index 无	高响应模式使能					
Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
0	INT16	RW	No	0~2	0	

- 0: 驱动器环路控制器采用传统控制方式
- 1: 驱动器环路控制器采用高响应模式方式
- 2: 驱动器环路控制器采用扰动观测器进行扰动补偿

P248	Index 无	高响应模式	高响应模式速度观测器带宽					
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RW	No	100~2000	150	Hz	

● 高响应模式速度观测器带宽,增大参数值,可使速度跟随能力与抗扰能力增强, 过大容易受噪声干扰。

	• н <i>э</i> • э• э• э•	* 6 -						
P249	Index 无	高响应模式	高响应模式速度观测器带宽参数设置有效					
Š	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RW	No	0~1	1		

● 参数意义:

- 0: 高响应模式速度观测器带宽参数设置无效
- 1: 高响应模式速度观测器带宽参数设置有效

P250	Index 无	高响应模式	高响应模式电流观测器带宽					
S	Sub Index	Data Type	Access				Unit	
	0	INT16	RW	No	50~400	180	10Hz	

● 高响应模式电流观测器带宽,增大参数值,可使电流跟随能力与抗扰能力增强, 过大容易受噪声干扰。

P251	Index 无	高响应模式	高响应模式电流观测器带宽参数设置有效					
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RW	No	0~1	0		

- 0: 高响应模式电流观测器带宽参数设置无效
- 1: 高响应模式电流观测器带宽参数设置有效

P252	Index 无	高响应模式	高响应模式第1转矩滤波时间常数					
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RW	No	0.05~5.00	0.10	ms	

- 转矩的低通滤波器,可抑制机械引起振动,减小转矩电流波动。
- 数值越大,抑制振动效果越好,转矩电流波动越小,过大会造成响应变慢,可能引起振荡;数值越小,响应变快,但受机械条件限制。
- 建议设置范围为 0.05~0.15, 若超出此范围容易引起系统振荡。

P253	Index 无	高响应模式	高响应模式速度观测器类型				
S	Sub Index	Data Type	Access				Unit
	0	INT16	RW	No	0~5	0	

- 0: 线性
- 1: 低级非线性
- 2: 中级非线性
- 3: 中高级非线性
- 4: 高级非线性
- 5: 超高级非线性

P254	Index 无	高响应模式	高响应模式速度观测器非指数型增益倍数					
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RW	No	0.0~10.0	1.5	倍	

● 高响应模式非线性函数增益倍数,数值越大,速度跟随与抗扰能力越强。

P255	Index 无	速度观测器增益					
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
	0	INT16	RW	No	10~1000	120	Hz

● 速度观测器增益的提高可使得观测器输出更快的跟踪到实际的速度反馈。

P256	Index 无	速度观测器	速度观测器补偿系数					
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RW	No	0~1000	150	%	

● 默认值不建议修改。

P258	Index 无	惯量推定模式					
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
	0	INT16	RW	No	0~9	0	

- 设定惯量推定模式,设置值越大推定惯量时默认惯量设置值越大。
- 参数意义:
 - 0: 关闭
 - 1: 保留,厂家使用
 - 2: 在线模式

P269 Index 无	惯量推定	惯量推定方式					
Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
0	INT16	RW	No	0~10	0		

- 参数意义:
 - 0: 方式1
 - 1: 方式 2

P270	Index 无	模型追踪技	模型追踪控制开关					
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RW	No	0~3	0		

- 建议首先用 Fn1 功能推定负载惯量。
- 适用于位置控制,根据不同的负载选择合适的参数,可提升系统的响应。
- 参数意义:
 - 0: 模型追踪无效
 - 1: 适用刚性负载
 - 2: 适用柔性负载
 - 3: 通用型

P271	Index 无	模型追踪控制增益						
	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
	0	INT16	RW	No	10~2000	40	Hz	

- 模型追踪控制增益,模式1~3均有效。
- 数值越大,响应越快,过大有可能带来噪音。

P272	Index 无	模型追踪值	模型追踪位置指令滤波关闭使能						
	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit		
	0	INT16	RW	No	0~1	0			

- 0: 滤波功能打开
- 1: 滤波功能关闭

P273	Index 无	模型追踪」	模型追踪正方向输出比例						
Sub Index		Data	Access	PDO	Setting	Initial	Unit		
		Type	Access	Mapping	Range	Value	Ollit		
	0	INT16	RW	No	0~1000	100	%		

- 模型追踪正方向控制偏差,模式1~3均有效。
- 通过调整此参数,可以分开调节正转和反转的响应速度。
- 数值越大,转矩环前馈作用越大,过大有可能带来噪音。

P274 Index 无	模型追踪周	模型追踪反方向输出比例						
Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit		
0	INT16	RW	No	0~1000	100	%		

● 说明同 P273。

P277	Index 无	模型追踪道	模型追踪速度补偿前馈						
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit		
	0	INT16	RW	No	0~100	100	%		

- 模型追踪速度补偿前馈,数值越大,速度环前馈作用越大,过大有可能带来噪音。
- 模式 1~3 均有效。

P280	Index 无	模型跟踪道	模型跟踪速度补偿前馈的滤波时间						
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit		
	0	INT16	RW	No	0.10~50.00	0.50	ms		

● 参数意义:

数值越大,噪音越小,过大会带来补偿的滞后。

P281	Index 无	模型跟踪道	模型跟踪速度环增益						
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit		
	0	INT16	RW	No	1~3000	40	Hz		

● 参数意义:

模型跟踪速度环增益,单位为Hz。

12 4 =										
P282	Index 无	模型跟踪道	模型跟踪速度环积分时间常数							
S	ub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit			
	0	INT16	RW	No	1.0~1000.0	20.0	ms			

● 参数意义:

模型跟踪速度环积分常数,单位为 ms。

P283	Index 无	惯量推定增益等级					
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit
	0	INT16	RW	No	0~2	0	

- 0: 低刚性
- 1: 中刚性
- 2: 高刚性

P285	Index 无	振动报警	振动报警时间						
S	Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit		
	0	INT16	RW	No	0~100	0	S		

● 设置为 100 时不生效,每 3 对应 1s。

P289 Index 无	振动检出水平						
Sub Index	Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit	
0	INT16	RW	No	0~2000	60	Hz	

● 最大最小速度误差达到该设置值时判定为振动。

P295	Index 无	自动调整模式下振动检出触发水平							
Sub Index		Data Type	Access	PDO Mapping	Setting Range	Initial Value	Unit		
	0	INT16	RW	No	1~200	20	rpm		

P296	Index 无	自整定模式							
Sub Index		Data	Access	PDO	Setting	Initial	Unit		
		Type		Mapping	Range	Value			
	0	INT16	RW	No	0~3	0			

- 0: 手动模式
- 1: 自动模式
- 2: 整定完成
- 3: 前馈模式

5.4.4 3 段参数

参数	名称	范围	缺省值	单位
P300	站点别名	0~239	0	

- 通过此参数设置站点别名,参数更改后,必须将参数存入 EEPROM,并且将驱动器断电后,再重新上电运行,方可生效!
- EtherCAT 站点的使用取决于 EtherCAT 主站。使用顺序寻址时,从站的站点号由 EtherCAT 主站按顺序分配,此站点别名设置无效。使用设置寻址时,EtherCAT 主 站读取从站站点别名来设置从站地址,此站点别名需要设置成非零值,在同一个 网络中,每台驱动器需要设置成不同的站点别名。

参数	名称	范围	缺省值	单位
P306	路径段插补类型	0~2	2	

- 通过此参数选择在CSP模式下位移线段之间的衔接方式,值为0时选择两个位移线段之间以加速度连续的方式完成衔接,避免加速度突变;值为1时选择两个位移线段之间以速度连续的方式完成衔接,避免速度突变;值为2时不考虑两个线段之间的加速度和速度是否连续,每个线段都通过线性均分的方式来完成插值。
- 参数意义:
 - 0: 加速度连续方式过渡:
 - 1: 速度连续方式过渡;
 - 2: 直接过渡,线段之间线性均分。

参数	名称	范围	缺省值	单位
P377	PP 路径 Halt 恢复模式	0~1	0	

- 参数意义:
 - 1: PP模式在Halt指令撤销之后,恢复Halt指令之前的路径段的运行。
 - 0: PP模式在Halt之后,中止所有后续路径段的运行。

5.4.5 6 段参数

参数	名称	范围	缺省值	单位
P604	电子齿轮电机端高位	0~32767	0	

● 参数意义:

电子齿轮电机端高位,最终电子齿轮电机端数值=电机端高位*65536+电机端低位。

参数	名称	范围	缺省值	单位
P605	电子齿轮电机端低位	$0\sim$ 32767	1	

● 参数意义:

电子齿轮电机端低位,最终电子齿轮电机端数值=电机端高位*65536+电机端低位。

参数	名称	范围	缺省值	单位
P606	电子齿轮负载端高位	0~32767	0	

● 参数意义:

电子齿轮负载端高位,最终电子齿轮负载端数值=负载端高位*65536+负载端低位。

参数	名称	范围	缺省值	单位
P607	电子齿轮负载端低位	0~32767	1	

● 参数意义:

电子齿轮负载端低位,最终电子齿轮负载端数值=负载端高位*65536+负载端低位。

5.4.6 7 段参数

参数	名称	范围	缺省值	单位
P700	电机类型选择	0~2	1	

● 参数意义:

- 0: 永磁同步旋转电机
- 1: 三相异步电机
- 2: 永磁同步直线电机

参数	名称	范围	缺省值	单位
P701	异步电机运行模式	0~2	2	

- 仅当 P700 为 1 时有效。
- 参数意义:
 - 0: 恒压频比 VF 控制方式
 - 1: 无感矢量 SVC 控制方式
 - 2: 有感矢量 FVC 控制方式

参数	全称	范围	缺省值	单位
P702	异步电机定子电阻	$0.010 \sim 10.000$	0.748	0
P703	异步电机转子电阻	0.010~10.000	0.553	22

参数	名称	范围	缺省值	单位
P704	异步电机互感	1.0~1000.0	97.0	mН
P705	异步电机定子漏电感	0.1~1000.0	2.9	mН
P706	异步电机极对数	1~1000	2	对
P707	异步电机转动惯量	0.01~300.00	15.10	10^-3kg *m^2
P708	异步电机额定电压	12~600	380	V
P709	异步电机额定转矩	0.1~400.0	35.0	N
P710	异步电机最大转矩百分比	0~1000	200	%
P712	异步电机额定电流	0.1~100.0	11.9	A
P713	异步电机额定功率	0.1~100.0	5.5	kw
P714	异步电机额定转速	500~10000	1500	rpm
P715	异步电机最大速度百分比	0~2000	800	%
P716	异步电机速度偏差过大报警使能	0~1	1	
P717	异步电机速度偏差过大报警判定值	0~10000	500	rpm
P718	异步电机速度偏差过大报警判定时间	0~10000	200	ms
P719	异步电机准停滤波功能使能	0~1	0	
P720	异步电机准停滤波时间常数	1~5000	32	ms
P721	异步电机准停结束延迟时间	1~5000	2000	ms
P722	ABZ 编码器补偿低速衰减比例	0.0~100.0	0.2	%
P723	ABZ 编码器补偿滞环切换功能使能	0~3	3	
P724	ABZ 编码器补偿低速滞环区间上限	0~1000	60	rpm
P725	ABZ 编码器补偿低速滞环区间下限	0~1000	30	rpm
P729	异步电机开环控制方式零位补偿电压	0~100	15	
P751	异步电机有感矢量控制方式磁链环增 益带宽	1~3000	40	Hz
P752	异步电机有感矢量控制方式磁链环积 分时间常数	1.0~1000.0	10.0	ms
P753	异步电机有感矢量控制方式弱磁电流 总限制	0.0~500.0	50.0	A
P754	异步电机有感矢量控制方式弱磁比例 系数	0.000~10.000	0.001	
P755	异步电机有感矢量控制方式弱磁积分 系数	0.00~100.00	1.00	
P756	异步电机有感矢量控制方式弱磁有效 速度值	0~30000	1500	rpm

参数	名称	范围	缺省值	单位
P757	异步电机有感矢量控制方式弱磁角度 补偿模式	0~3	3	

- 0: 不通过锁相环
- 1: 通过锁相环且不补偿
- 2: 通过锁相环且补偿固定电角度
- 3: 通过锁相环且根据速度反馈计算电角度补偿值

参数	名称	范围	缺省值	单位
P758	异步电机有感矢量控制方式弱磁角度 补偿角度比例	-180~180	2	

● P776 为 1 时,单位为 1 电角度; P776 为 2 时,单位为半周期。

参数	名称	范围	缺省值	单位
P759	异步电机有感矢量控制方式正常运行 时死区补偿使能	0~1	1	

● 参数意义:

- 0: 关闭死区补偿功能
- 1: 开启死区补偿功能

参数	名称	范围	缺省值	单位
P760	异步电机有感矢量控制方式速度反馈 平均值滤波开启	0~1	0	

● 参数意义:

- 0: 关闭速度反馈平均值滤波功能
- 1: 开启速度反馈平均值滤波功能

参数	名称	范围	缺省值	单位
P761	异步电机有感矢量控制方式死区补偿 比例	0~1000	100	%

参数	名称	范围	缺省值	单位
P762	异步电机有感矢量控制方式速度观测 器来源	0~1	1	

● 参数意义:

- 0: 原始速度反馈
- 1: 滤波后速度反馈

参数	名 称	范围	缺省值	单位
P763	异步电机有感矢量控制方式低速磁链 给定比例	1~200	40	%

参数	名称	范围	缺省值	单位
P764	异步电机有感矢量控制方式中速磁链 给定比例	1~200	20	%
P765	异步电机有感矢量控制方式高速磁链 给定比例	1~150	15	%

参数	名称	范围	缺省值	单位
P766	异步电机有感矢量控制方式极高速磁 链给定比例	1~100	8	%

- 有感矢量控制方式下磁链给定值相对磁链上限值的百分比。
- 参数意义:
 - 0: 转矩电流转换系数实时计算并更改
 - 1: 转矩电流转换系数运动过程中保持不变

参数	名称	范围	缺省值	单位
P767	异步电机有感矢量控制方式磁链观测 器幅值补偿比例	0~200	45	%

针对电气参数不准确以及死区电压,采样滞后等导致的非理想工况进行的磁链观测补偿比例。增大该参数可以增大补偿效果,提高磁链观测精度,但该值过大容易引起系统振荡。

参数	名称	范围	缺省值	单位
P768	异步电机有感矢量控制方式磁链观测 器速度来源	0~1	1	

● 参数意义:

- 0: 速度给定
- 1: 速度反馈

-	- · · · · · · · · · · · · · · · · · · ·			
参数	名称	范围	缺省值	单位
P769	异步电机有感矢量控制方式磁链观测 器比例增益	0~1000	10	

● 参数意义:

此参数值越大,观测值的滞后性越低。

参数	名称	范围	缺省值	单位
P770	异步电机有感矢量控制方式磁链观测 器扰动观测系数	0~1000	20	

● 参数意义:

此系数越大,观测器的抗扰性越强,但过大会引入噪声。

参数	名称	范围	缺省值	单位
P771	异步电机有感矢量控制方式参数辨识 模式	0~1	0	

- 0: 辨识电阻和电感参数
- 1: 辨识电阻和电阻参数,以及极对数

参数	名称	范围	缺省值	单位
P77	异步电机有感矢量控制方式磁链观测 器电压给定来源	0~1	0	

● 参数意义:

- 0:来源电流环输出
- 1:来源电压重构

参数	名称	范围	缺省值	单位
P773	异步电机有感矢量控制方式母线电压 模式	0~1	0	

◆ 参数意义:

- 0: 静态值
- 1: 动态采样

1/21	参数	名称	范围	缺省值	单位
I	2774	异步电机有感矢量控制方式 D 轴电压 限幅比例	0~300	80	%
F	2775	异步电机有感矢量控制方式总电压限 幅比例	0~300	88	%

参数	名称	范围	缺省值	单位
P776	异步电机有感矢量控制方式磁链观测 器电压给定延迟	0~2	0	

● 参数意义:

0: 不延迟

N: 延迟 N 拍

参数	名称	范围	缺省值	单位
P777	异步电机有感矢量控制方式弱磁速度 切换上限	0~3000	0	rpm
P778	异步电机有感矢量控制方式弱磁速度 切换下限	0~3000	0	rpm
P779	异步电机有感矢量控制方式弱磁速度 误差滤波器带宽	1~3000	150	Hz

参数	名称	范围	缺省值	单位
P780	异步电机有感矢量控制方式磁链环控 制方式	0~1	0	

◆ 参数意义:

- 0: 磁链环输出
- 1: 直接给予直轴电流给定

参数	名称	范围	缺省值	单位
P794	异步电机有感矢量控制方式 D 轴电流 环增益百分比例	0.01~5.00	1.00	

参数	名称	范围	缺省值	单位
P795	异步电机有感矢量控制方式转矩系数 来源	0~2	0	

● 参数意义:

- 0: 来源于实时磁链给定
- 1:来源于磁链观测
- 2: 源于额定以下磁链给定

参数	名称	范围	缺省值	单位
P796	异步电机有感矢量参数辨识第一电流 百分比例	0.01~2.00	0.30	
P797	异步电机有感矢量参数辨识第二电流 百分比例	0.01~2.00	0.70	

5.4.7 8 段参数

参数	2称	范围	缺省值	单位
P83	正余弦编码器单齿位数	4~32	23	位

参数	名称	范围	缺省值	单位
P856	第二编码器关联轴号	0~1	1	

● 参数意义:

- 0: 第二编码器不生效
- 1: 第二编码器关联轴 1

参数	名称	范围	缺省值	单位
P857	第三编码器关联轴号	0~1	0	

● 参数意义:

0: 第三编码器不生效

1: 第三编码器关联轴 1

参数	名称	范围	缺省值	单位
P880	位置反馈对应的编码器	0~3	2	

● 参数意义:

- 0: 位置反馈对应电机编码器
- 1: 位置反馈对应虚拟编码器
- 2: 位置反馈对应与此轴关联的第二编码器
- 3: 位置反馈对应与此轴关联的第三编码器

参数	名称	范围	缺省值	单位
P881	全闭环速度环反馈来源	-1~3	2	

● 参数意义:

- -1: 速度反馈来源与位置反馈相同
- 0: 速度反馈来源于电机编码器
- 1: 速度反馈来源于与此轴关联的虚拟编码器
- 2: 速度反馈来源于与此轴关联的第二编码器
- 3: 速度反馈来源于与此轴关联的第三编码器

参数	名称	范围	缺省值	单位
P882	全闭环模式	0~1	0	

● 参数意义:

- 0: 直接使用外部编码器作为位置反馈来源
- 1: 辅助使用外部编码器生成位置反馈

参数	名称	范围	缺省值	单位
P883	全闭环偏差滤波器带宽	0~1000	10	Hz

● 参数意义:

当全闭环模式为1(P882=1)时,用于位置指令生成的偏差滤波器响应带宽。

参数	名称	范围	缺省值	单位
P884	全闭环双编码器位置差检测	$0.00 \sim 100.00$	0.05	卷

● 参数意义:

用于检测电机自带编码器与外部编码器相对反馈位置差报警用,当两个编码器相对反馈位置大于该参数所设置数值后触发位置差检测报警。

参数	名称	范围	缺省值	单位
P885	位置反馈对应的编码器方向	0~1	0	

● 参数意义:

用于设置位置反馈对应编码器方向,仅当 P888 设置为 1 时生效。

参数	名称	范围	缺省值	单位
P886	位置反馈编码器旋转一圈对应的脉冲 数高位	0~30000	0	
P887	位置反馈编码器旋转一圈对应的脉冲 数低位	0~9999	4096	

用于设置位置反馈对应编码器分辨率,仅当 P888 设置为 1 时生效,其表示位置反馈对应编码器一圈对应的脉冲数,计算方式为 P886*10000+P887。

参数	名称	范围	缺省值	单位
P888	位置反馈编码器脉冲设置生效	0~1	0	

● 参数意义:

用于触发位置反馈对应编码器的设置生效,仅当其值设置为1时 P885, P886,P887 生效。

参数	名称	范围	缺省值	单位
P893	主编码器齿数	0~32767	0	
P894	第二编码器齿数	0~32767	0	个
P897	正余弦编码器计数方向	0~1	0	
P898	电机编码器相位角补偿使能	0~1	1	
P899	电机编码器相位角补偿时间	0~1	0	

5.4.8 10 段参数

参数	名称	范围	缺省值	单位
P1058	永磁同步电机无位置传感器控制使能 后等待时间	0.0~100.0	2.0	S

参数	名称	范围	缺省值	单位
P1059	永磁同步电机无位置传感器控制电流 注入关闭选择	0~1	1	

● 参数意义:

0: 高速不关闭

1: 高速关闭

参数	名称	范围	缺省值	单位
P1060	永磁同步电机无位置传感器控制使能	0~1	0	

● 参数意义:

0: 关闭

1: 开启

参数	名称	范围	缺省值	单位
P1061	永磁同步电机无位置传感器控制观测 器增益	0~1000	250	Hz
P1062	永磁同步电机无位置传感器控制速度 滤波器带宽	0~1000	150	Hz

参数	名称	范围	缺省值	单位
P1063	永磁同步电机无位置传感器控制低速 增益百分比	0.0~100.0	100.0	%
P1064	永磁同步电机无位置传感器控制低速 电流注入百分比	0~300	10	%
P1065	永磁同步电机无位置传感器控制低速 电流注入切换速度	0~5000	300	rpm
P1066	永磁同步电机无位置传感器控制磁链 给定百分比	0~1000	100	%
P1067	永磁同步电机无位置传感器控制死区 补偿使能	0~1	0	
P1068	永磁同步电机无位置传感器控制死区 补偿比例	0~1000	100	%
P1069	永磁同步电机无位置传感器控制电流 注入结束切换速度	0~5000	800	rpm
P1070	永磁同步电机无位置传感器控制电流 报警基准	0.0~100.0	0.0	1A/100r pm

参数	名称	范围	缺省值	单位
P1071	永磁同步电机无位置传感器控制磁链 角补偿使能	0~2	0	

- 0: 关闭
- 1: 开启手动模式
- 2: 开启自动模式

参数	名称	范围	缺省值	单位
P1072	永磁同步电机无位置传感器控制磁链 角补偿电角度	-45~45	0	o

参数	名称	范围	缺省值	单位
P1073	永磁同步电机无位置传感器控制自动 磁链角补偿生效时间	0~10000	30	S

● 设置为0时为持续生效

参数	名称	范围	缺省值	单位
P1074	永磁同步电机无位置传感器控制方法	0~2	0	

● 参数意义:

0: 低阶电流观测器法

- 1: 非线性磁链观测器法
- 2: 组合使用两种控制方式

参数	名称	范围	缺省值	单位
P1075	永磁同步电机无位置传感器控制非线 性磁链观测器法增益	0.00~300.00	1.20	倍

参数	名称	范围	缺省值	单位
P1076	永磁同步电机无位置传感器控制变参 数功能使能	0~3	0	

- 0: 关闭
- 1: 仅电感
- 2: 仅电阻
- 3: 电感+电阻

参数	名称	范围	缺省值	单位
P1077	永磁同步电机无位置传感器控制变参 数功能电阻变换倍数	0.0~1.0	0.1	倍/额定 电流

参数	名称	范围	缺省值	单位
P1080	惯量辨识类型	0~1	0	

参数意义:

- 0: 辨识负载惯量比
- 1: 辨识自身惯量

参数	名称	范围	缺省值	单位
P1081	旋转电机惯量辨识功能需要配置的功 率等级	0.0~1000.0	2.0	kw

5.5 DI 功能详解

具体内容请见"6.5.3 数字输入/数字输出",下表为 IO 的功能说明。

序号	符号	功能	功能解释	
0	NULL	无功能	输入状态对系统无任何影响。	
2	ARST	报警清除	有报警时,如果该报警允许清除,输入上升沿(OFF 变 ON 瞬间)清除报警。注意只有部分报警允许清除。	
3	CCWL	正转驱动禁止	OFF:禁止正转(CCW)转动; ON:允许正转(CCW)转动。 用于机械极限行程保护,功能受参数 P097 控制。注 意 P097 缺省值是忽略本功能,若需要使用本功能, 需要修改 P097。 说明	
			0 使用正转驱动禁止功能,必须接行程 2 开关的常闭触点。 1 忽略正转驱动禁止功能,电机可向正 3 (缺省) 方向运行,本信号无作用,无需接入。	
4	CWL	反转驱 动禁止	OFF: 禁止反转 (CW) 转动; ON: 允许反转 (CW) 转动。 用于机械极限行程保护,功能受参数 P097 控制。注意 P097 缺省值是忽略本功能,若需要使用本功能,需要修改 P097。 P097 说明 0 使用反转驱动禁止功能,必须接行程	
			1 开关的常闭触点。 2 忽略反转驱动禁止功能,电机可向反 3 (缺省) 方向运行,本信号无作用,无需接入。	
15	EMG	紧急停机	OFF: 允许主轴驱动器工作; ON: 依据 P164 参数所设定的方式使电机停止运行	
24	REF	原点回 归参考点	原点回归外部参考点	

5.6 DO 功能详解

具体内容请见"6.5.3 数字输入/数字输出",下表为 IO 的功能说明。

77 17	內合用儿	0.3.3	级于制山 , 下衣 內 IO 的 切	
序号	符号	功能	功能解释	
0	OFF	一直无效	强制输出 OFF。	
1	ON	一直有效	强制输出 ON。	
2	RDY	驱动器准备好	OFF: 驱动器主电源未合或有报警;	
	KD I	704761庄田刘	ON: 驱动器主电源正常,无报警。	
3	ALM	 投警	OFF: 有报警;	
	7 112/11	11/15	ON: 无报警。	
			OFF: 电磁制动器制动;	
8	BRK	 电磁制动器	ON: 电磁制动器释放。	
	Didi	1 HAA 19 1 - 93 HH	输出状态由驱动器决定,详见"4.10 电磁制动	
			器"。	
9	RUN	 驱动器运行中	OFF: 主轴电机未通电运行;	
		V2 /V HA . C V	ON: 主轴电机通电运行中。	
11	TRQL	转 矩限制中	OFF: 电机转矩未达到限制值;	
			ON: 电机转矩达到限制值。	
10	CDI	* \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	转矩控制时,	
12	SPL	速度限制中	OFF: 电机速度未达到限制值;	
			ON: 电机速度达到限制值。	
13	HOME	原点回归完成	原点回归完成后,输出 ON	
		电磁制动器	OFF: 电磁制动器制动;	
23	BRKNET	(EtherCAT	ON: 电磁制动器释放。	
23	DKKNEI	対象控制)	M : 电磁制切器样放。 输出状态由 60FE 中 bit0 决定。	
24	NETIO1	/1 多门工中17	制山水池田 00TE 1 0It0 1大足。	
25	NETIO1	EtherCAT		
26	NETIO2 NETIO3	相应控制	 详见 "6.5.3 数字输入/数字输出"部分说明	
27	NETIO3	字控制 IO	[] [] []	
28	NETIO4 NETIO5	1 17.163 10		
20	NETIOS		OFF:外置动态制动器无效;	
30	DBC	动态制动	ON: 外置动态制动器生效。	
			ON・月旦奶心門奶加工X。	

第6章 通讯功能

6.1 常用对象说明

1. 6040h Control Word

参见 "6.3.2 控制字 6040h" 部分说明。

2. 6041h Status Word

参见"6.3.3 状态字6041h"部分说明。

3. 6060h Mode of Operation

目前只支持以下四种运行模式,描述如下:

- 6: 原点回归模式: 8: 同步位置模式:
- 9: 同步速度模式; 10: 同步转矩模式。

在发送使能命令之前,需要确定此对象值,使能之后的运行模式以接收到使能命令时此对象值为准,数据类型是 SINT。

4. 607Ah Target Position

Target Position 目标位置,在 CSP 位置模式下生效,当前周期接收到的位置指令表示驱动器在当前周期需要运行到的绝对位置,单位为 User Unit,数据类型是 DINT。

User Unit: 即用户单位,表示用户所设置的位置最小分辨率。

5. 60FFh Target Velocity

Target Velocity 目标速度描述,在 CSV 速度模式下生效,当前周期接收到的速度指令表示驱动器在当前周期运行内运行的目标速度,单位为 User Unit/s,数据类型是 DINT。

6. 6071h Target Torque

Target Torque 目标转矩,在 CST 速度模式下生效,当前周期接收到的转矩指令表示驱动器在当前周期运行内运行的目标转矩,单位为额定转矩 0.1%,数据类型是 INT。

7. 6064h Position Actual Value

Position Actual Value 当前实际位置值,单位是 User Unit,数据类型是 DINT。 编码器的单圈值的原始数据可以通过 0x2703.0x03 读出,读出的数据最高位对齐, 如果编码器位数不足 32 位的,低位补 0,例如编码器分辨率为 17 位时,bit31 到 bit15 为编码器的 17bit 单圈值,bit14 到 bit0 位补 0。 编码器的多圈值的原始数据可以通过 0x2703.0x04 读出。

8. 606Ch Velocity Actual Value

Velocity Actual Value 当前实际速度值,单位是 User Unit/s,数据类型是 DINT。

9. 6077h Torque Actual Value

TorqueActualValue 当前实际转矩值,单位为 0.1% 转矩,数据类型是 INT。

10. 2700h Sub Index 1: Pos Loop Command

驱动器收到的位置指令值,单位是 User Unit/s,数据类型是 DINT。数据范围: -2147483648~2147483647,65536 表示一圈。

11. 2700h Sub Index 2: Pos LoopFedback

电机位置反馈值,单位是 User Unit/s,数据类型是 DINT。

12. 2700h Sub Index 3: Pos Loop Error

驱动器位置跟踪误差,单位是 User Unit/s,数据类型是 DINT。

13. 2701h Sub Index 1: Velocity Loop Motor Speed

驱动器速度环反馈转速,单位:rpm,数据类型是DINT。

14. 2702h Sub Index 1: Torque Loop Motor Actual Torque

驱动器转矩环实际转矩,单位:%额定转矩,数据类型是INT。

15. 2702h Sub Index 2: Torque Loop Motor Actual Peak Torque

驱动器转矩环实际峰值转矩,单位:%额定转矩,数据类型是INT。

16. 2702h Sub Index 3: Torque Loop Motor Actual Current

驱动器转矩环实际电流,单位: 0.01A,数据类型是 INT。

17. 2702h Sub Index 4: Torque Loop Motor Actual Peak Current

驱动器转矩环实际峰值电流,单位: 0.1A,数据类型是 INT。

18. 2703h Sub Index 1: StartUp Single Position

驱动器上电时单圈位置,32位高位对齐,最低位补0,数据类型是DINT。

19. 2703h Sub Index 2: StartUp Multi Turn

驱动器上电时多圈计数,数据类型是 INT。

20. 2703h Sub Index 3: Current Single Position

当前时刻单圈位置,32位高位对齐,最低位补0,数据类型是DINT。

21. 2703h Sub Index 4: Current Multi Turn

当前时刻多圈计数,数据类型是 INT。

22. 2707h Sub Index 1

电机额定电流,单位: 0.1A,数据类型是 INT。

23. 2707h Sub Index 2

电机额定扭矩,单位: 0.1Nm,数据类型是 INT。

24. 2707h Sub Index 3

电机额定速度,单位:rpm,数据类型是INT。

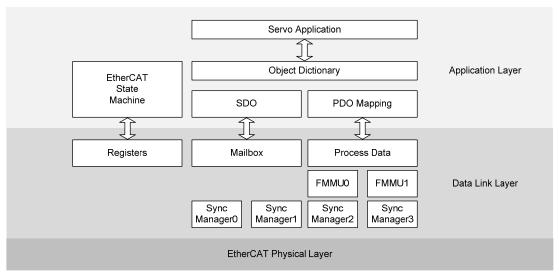
25. 27FEh Operation Command

内部操作指令,保留。

26. 27FFh Operation Status:

内部操作状态,保留。

6.2 EtherCAT 通信

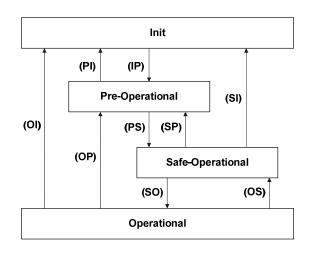

EtherCAT 是 Ethernet for Control Automation Technology 的缩写,是使用德国BECKHOFF 公司开发的实时以太网(Real-Time Ethernet)主从机之间的通信方式,由ETG(EtherCAT Technology Group)进行管理。

EtherCAT 通信的基本概念是,通过主机发送的 DataFrame 经过从站时,从站在接收发送 Data 的同时,向 DataFrame 发送接收 Data。

EtherCAT 使用的是以 IEEE802.3 为标准的 Ethernet 框架。

同样以 100BASE-TX 的 Ethernet 为 Base 的情况下,电缆长度最长为 100m,可接收的从站数最多为 65535,因此可以无限构成 Network。而在单独使用 Ethernet Switch 的情况下,也可与通常使用的 TCP/IP 的相互接收。

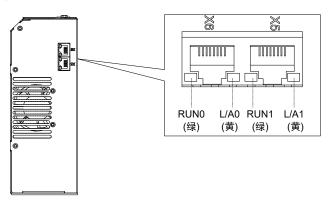
6.2.1 CANopen over EtherCAT 的构造



驱动器采用的是 CiA 402 驱动器的外形。应用阶层的 Object Dictionary 中包含应用数据及过程数据界面,还包括应用数据之间的 PDO 映射情报。

PDO(Process Data Object)是由可以映射在 PDO 中的 Object Dictionary 构成,过程数据的内容根据 PDO 映射定义。

过程数据通信会有周期的读写 PDO,信箱通信则是非周期性的通信,可以读写所有 Object Dictionary。


6.2.2 EtherCAT 状态机

状态	说明	
Init	设备初始化。	
IIIIt	无法使用信箱通信及过程数据通信。	
Pre-Operational	当前状态可以使用信箱通信。	
Safa Omanational	可以读取 PDO 输入数据(TxPDO)。	
Safe-Operational	不能接收 PDO 输出数据(RxPDO)。	
Operational	进行周期性的 I/O 通信,可以处理 PDO 输出数据(RxPDO)。	
状态迁移	说明	
IP	开始信箱通信。	
PI	中断信箱通信。	
PS	开始更新输入数据。	
SP	终止更新输入数据。	
SO	开始更新输出数据。	
OS	终止更新输出数据。	
OP	终止更新输入/输出数据。	
SI	终止更新输入数据及信箱通信。	
OI	终止所有输入/输出数据更新及信箱通信。	

6.2.3 状态 LED

EP5S 驱动器的状态 LED 位于 X5 (IN) 和 X6 (OUT) 插座上,如下图所示。

1. L/A0, L/A1 (Link Activity) LED (YELLOW LED)

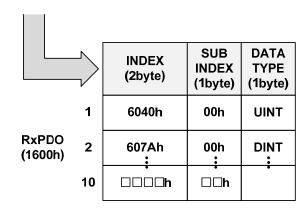
L/A0 LED 显示 X5 通信接口的状态,L/A1 LED 显示 X6 通信接口的状态,各 LED 显示的内容如下表所示。

Link/Activity LED	Description	
Off	通信未连接。	
Flickering	通信已连接,通信被激活。	
On	通信已连接,通信尚未被激活。	

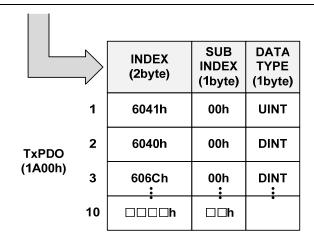
2. RUNO, RUN1 (Run) LED (GREEN LED)

显示处于 EtherCAT State Machine 的哪个状态。

RUN LED	Description	
Off	处于 INIT 状态。	
Blinking	处于 Pre-Operational 状态。	
Single Flash	处于 Safe-Operational 状态。	
On	处于 Operational 状态。	

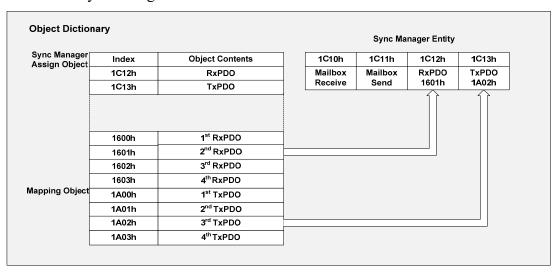

6.2.4 Data Type

本说明书所使用的 Data Type 的	的内容和范围如下表所示。
----------------------	--------------


	31	
Name	Description	Range
SINT	Signed 8bit	-128~127
USINT	Unsigned 8bit	0~255
INT	Signed 16bit	-32768~32767
UINT	Unsigned 16bit	0~65535
DINT	Signed 32bit	-21247483648~21247483647
UDINT	Unsigned 32bit	0~4294967295
STRING	String Value	

6.2.5 PDO 映射

Index	Sub-Index	Name	Data Type
6040h	-	Controlword	UINT
607Ah	-	目标位置(Target Position)	DINT



Index	Sub-Index	Name	Data Type
6041h	-	StatusWord	UINT
6064h	-	位置实际值(Position Actual Value)	DINT
606Ch	-	速度实际值(Velocity Actual Value)	DINT

SyncManager 可以由几个 PDO 构成。SyncManagerPDO Assign Object (RxPDO: 1C12h, TxPDO: 1C13h)显示 SyncManger 与 PDO 之间的关系。

下图显示 SyncManager PDO 映射。

PDO 映射

下列表格是已基本设置的 PDO 映射。此设置定义于 EtherCAT Slave Information file (XML file) 之中。

PDO Mapping

RxPDO (1600h)	Control Word (6040h)	Mode of Operation (6060h)	Target position (607Ah)	Target Velocity (60FFh)	Target Torque (6071h)
TxPDO (1A00h)	Status Word (6041h)	Mode of Operation Display (6061h)	Position Actual Value (6064h)	Veloctiy Actual Value (606Ch)	Torque Actual Value (6077h)

PDO Mapping

RxPDO Control Word (6040h)		Target position (607Ah)
TxPDO (1A01h)	Status Word (6041h)	Position Actual Value (6064h)

PDO Mapping

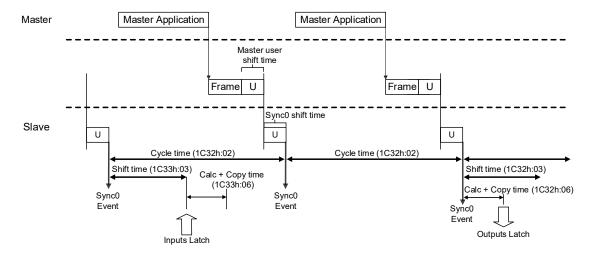
RxPDO (1602h) Control Word (6040h)	Target Velocity (60FFh)
------------------------------------	-------------------------------

TxPDO	Status Word	Position	Veloctiy
	(6041h)	Actual Value	Actual Value
(1A02h)		(6064h)	(606Ch)

PDO Mapping

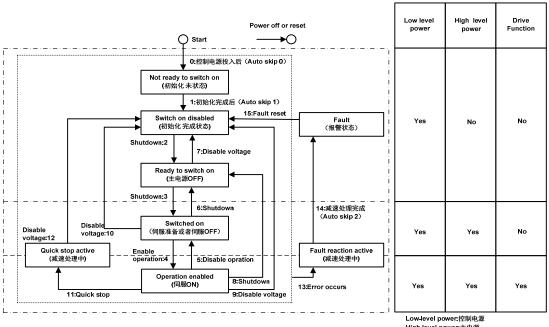
RxPDO (1603h)	Control Word (6040h)	Target Torque (6071h)	
TxPDO (1A03h)	Status Word (6041h)	Position Actual Value (6064h)	Torque Actual Value (6077h)

6.2.6 根据 DC(Distributed Clock)的同步


(6064h)

EtherCAT 通信中,为实现同步而使用 DC(Distributed Clock)。主站与从站共享 Reference Clock (System time)实现同步,从站根据 Reference Clock 引起的 Sync0 事 件实现同步。

(6077h)


有如下同步模式,通过 Sync Control 注册可以更换模式。

DC Synchronous 模式下,驱动器通过 EtherCAT 主站的 Sync0 事件实现同步。

6.3 驱动模式

6.3.1 驱动器状态机

Low-level power:控制电源 High-level power:主电源 Drive Function:伺服 ON

状态	说明
Not ready to switch on	接通控制电源,正在初始化中。
Switch on disabled	初始化完毕,可以设置驱动器参数。
Switch on disabled	当前状态无法供给主电源。
Ready to switch on	当前状态可以开启主电源,可以设置驱动器参数。
Ready to Switch on	驱动器处于未激活状态。
Switched on	主电源为 On 状态,可以设置驱动器参数。
Switched on	驱动器处于未激活状态。
Operation enabled	非 Fault 状态下,启动驱动器功能,可以向电机施加
Operation enabled	转矩。同样可以设置驱动器参数。
Quick Stop active	Quick stop 功能已执行。
Quick Stop active	可以设置驱动器参数。
Fault reaction active	因 Quick Stop 或驱动器所致的 Fault 状态。
raun reaction active	可以设置驱动器参数。
Fault	Fault reaction 处理完毕,驱动器功能为未激活状态。
rault	可以设置驱动器参数。

控制命令与状态切换

运行模式通过 6060h(运行模式)可以变更。当控制器切换为新的运行模式,驱动器收到后应立即切换成相同的模式。

HH DC.	可用应立即切换风相间的模式。 CiA402 状态切换	控制字 6040h	状态字 6041h bit0~bit9
0	上电→初始化 Start→Not ready to switch on	自然过渡,无需控制指令	0000h
1	初始化→驱动器无故障 Not ready to switch on→Switch on disabled	自然过渡,无需控制指令 若初始化中发生错误,直接 进入13	0270h
2	驱动器无故障→驱动器准备好 Switch on disabled→Ready to switch on	0006h	0231h
3	驱动器准备好→等待打开驱动器使能 Ready to switch on→Switched on	0007h	0233h
4	等待打开驱动器使能→驱动器运行 Switched on→Operation enabled	000Fh	0237h
5	驱动器运行→等待打开驱动器使能 Operation enabled→Switched on	0007h	0233h
6	等待打开驱动器使能→驱动器准备好 Switched on→Ready to switch on	0006h	0231h
7	驱动器准备好→驱动器无故障 Ready to switch on→Switch on disabled	0000h	0270h
8	驱动器运行→驱动器准备好 Operation enabled→Ready to switch on	0006h	0231h
9	驱动器运行→驱动器无故障 Operation enabled→Switch on disabled	0000h	0270h
10	等待打开驱动器使能→驱动器无故障 Switched on→Switch on disabled	0000h	0270h
11	驱动器运行→快速停机 Operation enabled→Quick stop active	0002h	0217h
12	快速停机→驱动器无故障 Quick stop active→Switch on disabled	快速停机方式 605A 选择为 0~3,停机完成后,自然过渡,无需控制指令	0270h
13	→故障停机 →Fault reaction active	除"故障"外其他任意状态 下,主轴驱动器一旦发生故 障,自动切换到故障停机状 态,无需控制指令	02B6h

	CiA402 状态切换	控制字 6040h	状态字 6041h bit0~bit9	
15	故障→驱动器无故障 Fault→Switch on disabled	0080h bit7 上升沿有效; bit7 保持为 1,其他控制指令 均无效。	0270h	

注意:因状态字 6041h 的 $bit10\sim bit15$ (bit14 无意义)与驱动器运行模式运行状态有关,在上表中均以"0"表示,具体的各位状态请查看各驱动器运行模式。

6.3.2 控制字 6040h

Index	Sub-	Name/	Linita	Units Range		Acc-	PDO	Op-	EEP-
maex	Index	Description	Units	Kange	Type	ess	PDO	mode	ROM
6040h	00h	ControlWord	-	0~65535	UINT	RW	Yes	ALL	Yes

指令:

bit	名称	描述
0	Switch On	1: 有效, 0: 无效
1	Enable Voltage	1: 有效, 0: 无效
2	Quick Stop	1: 无效, 0: 有效
3	Enable Operation	1: 有效, 0: 无效
4~6		与驱动器运行模式相关
7	Fault Reset	故障复位对于可复位故障和警告,执行故障复位功能; bit7 上升沿有效; bit7 保持为 1,其他控制指令均无效。
8	Halt	各模式下的暂停方式请查询对象字典605Dh。
9		与驱动器运行模式相关
10~15		预留, 厂家自定义

注意:

1. bit0~bit3 和 bit7 在驱动器运行模式下意义相同,每一个 bit 位单独赋值无意义,必须与其他位共同构成某一控制指令。每一命令对应一确定的状态,主轴驱动器按照 CiA402 状态机切换流程引导进入预计的状态。

Common 1		Bits of	Transitions			
Command	Bit 7	Bit 3	Bit 2	Bit 1	Bit 0	Transitions
Shut Down	0	×	1	1	0	2, 6, 8
Switch on	0	0	1	1	1	3
Switch on+enable operation	0	1	1	1	1	3+4 (NOTE)
Disable Voltage	0	X	×	0	×	7, 9, 10, 12
Quick Stop	0	X	0	1	×	7, 10, 11
Disable Operation	0	0	1	1	1	5
Enable Operation	0	1	1	1	1	4, 16
Fault Reset	<u>_</u>	×	×	×	×	15

NOTE 执行完 Switch on 状态功能之后自动跳转到 Enable Operation 状态。

2. bit4~bit6 与驱动器运行模式相关(请查看不同模式下的控制指令)。

Op-mode	Bit 9	Bit 6	Bit 5	Bit 4
hm	-	1	-	Start homing
csp	-	-	-	
csv	-	-	-	
cst	-	-	-	

6.3.3 状态字 6041h

Index	Sub- Index	Name/ Description	Units	Range	Data Type	Acc -ess	PDO	Op- mode	EEP- ROM
6041h	00h	Status Word	-	0~ 65535	UINT	RO	TPDO	ALL	Yes

设置控制指令:

bit	名称	描述
0	Ready to Switch On	
1	Switch On	
2	Operation Enable	
3	Fault	
4	Voltage Enable	
5	Quick Stop	
6	Switch On Disable	
7	Warning	
8		预留,厂家自定义
9	Remote	0: 非远程控制模式,EP5S系列产品仅支持远程控制模式 模式 1: 远程控制模式
10	Target Reached	0: 目标位置或速度未到达 1: 目标位置或速度到达
11	InternalLimit Active	0: 位置指令或反馈未达到软件内部位置限制 1: 位置指令达到软件内部位置限制,软件绝对位置 限制生效后,驱动器将以位置限制值为目标位置 运行,到达限位值处停止,输入反向位移指令可 使电机退出位置超限状态,并清零该位。
12~13		与各运行模式相关
14		预留,厂家自定义
15	原点回零完成	0: 原点回零未进行或未完成 1: 已完成原点回零,参考点已找到

注意:

1. bit0~bit3、bit5 和 bit6 在驱动器运行模式下意义相同,每一个 bit 位单独读取无意义,必须与其他位共同组成,反馈驱动器当前状态。控制字 6040h 按顺序发送命令后,驱动器反馈一确定的状态。

		状	态字			State		
xxxx	XXXX	x0xx	0000	b	Not Ready to Switch on	初始化未完成状态		
xxxx	XXXX	x1xx	0000	b	Switch on disabled	初始化完成状态		
XXXX	XXXX	x01x	0001	b	Ready to switch on	主电路电源 OFF 状态		
XXXX	XXXX	x01x	0011	b	Switched on	驱动器 OFF/驱动器准备		
XXXX	XXXX	x01x	0111	b	Operation enabled	驱动器 ON		
XXXX	XXXX	x00x	0111	b	Quick stop active	即停止		
XXXX	XXXX	x0xx	1111	b	Fault reaction active	异常(报警)判断		
XXXX	XXXX	x0xx	1000	b	Fault	异常(报警)状态		

2. bit10、bit12~bit13 与驱动器运行模式相关(请查看不同模式下的控制指令)。

Op-mode	Bit 13	Bit 12	Bit 10
hm	原点复位报错	Homing attained	target reached
csp	Following error	Drive follows command value	-
csv	-	Drive follows command value	-
cst	-	Drive follows command value	-

3. bit4、bit7、bit9、bit11 在各运行模式下意义相同,反馈驱动器执行某运行模式后的状态。

bit4(主电源上电):1的情况下,表示主电路继电器吸合。

bit7(报警):1的情况下,表示报警发生。报警时电机是否运动,取决于报警类型。

bit9(remote): EtherCAT 应用层的状态转换到 PreOP 以上时变为 1。

6.4 运行模式

EP5S 暂时只支持以下运行模式(6060h)。

- Cyclic Synchronous Position Mode
- Cyclic Synchronous Velocity Mode
- Cyclic Synchronous Torque Mode
- hm mode

1. 关联对象

Index	Sub- Index	Name/ Description	Units	Range	DataT ype	Acc -ess	PDO	Op- mode	EEP- ROM
6502h	00h	Supported Drive Modes	-	0~ 4294967295	UD- INT	RO	Tx- PDO	ALL	No

- 表示支持的控制模式(Mode of operation)。
- 表示值是1的情况下支持的此模式。

bit	3116	1610	9	8	7	6	5	4	3	2	1	0
Op-mode	ms	r	cst	csv	csp	ip	hm	r	tq	pv	vl	pp
Value	00	00	1	1	1	0	1	0	0	0	0	0

ms: Manufacturer-specific

r : 保留

bit	名称	简称	对应
0	Profile position mode(轮廓位置控制模式)	pp	No
1	Velocity mode (速度控制模式)	vl	No
2	Profile velocity mode (轮廓速度控制模式)	pv	No
3	Torque profile mode (轮廓转矩控制模式)	tq	No
5	Homing mode (原点回归控制模式)	hm	Yes
6	Interpolated position mode (插补位置控制模式)	ip	No
7	Cyclic synchronous position mode (周期位置控制模式)	csp	Yes
8	Cyclic synchronous velocity mode (周期速度控制模式)	csv	Yes
9	Cyclic synchronous torque mode (周期转矩控制模式)	cst	Yes

Index	Sub- Index	Name/ Description	Units	Range	Data Type	Acc -ess	PDO	Op- mode	EEP- ROM
6060h	00h	Modes of Operation	-	-128~127	SINT	RW	RxPDO	ALL	Yes

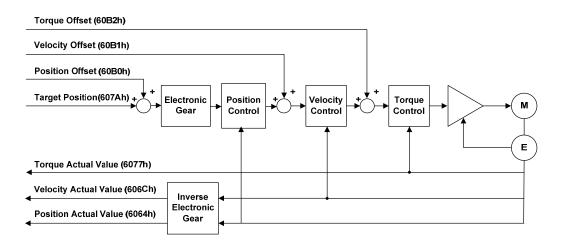
- 设定主轴驱动器的控制模式。
- 非对应的控制模式是禁止设定的。

Value	操作显示模式	简称	对应
-128~1	保留		
0	No mode change /no mode assigned (模式未变更/模式未设定)		Yes
1	Profile position mode (轮廓位置控制模式)	pp	No
2	Velocity mode (速度控制模式)	vl	No
3	Profile velocity mode (轮廓速度控制模式)	pv	No
4	Torque profile mode (轮廓转矩控制模式)	tq	No
6	Homing mode (原点回归控制模式)	hm	Yes
7	Interpolated position mode (插补位置控制模式)	ip	No
8	Cyclic synchronous position mode (周期位置控制模式)	csp	Yes
9	Cyclic synchronous velocity mode (周期速度控制模式)	csv	Yes
10	Cyclic synchronous torque mode (周期转矩控制模式)	cst	Yes
11~127	保留		

Ladon	Sub-	Name/	Linita	Range	Data	Acc	PDO	Op-	EEP-
Index	Index	Description	Units		Type	-ess	PDO	mode	ROM
		Modes of							
6061h	00h	Operation	-	-128~127	SINT	RO	TxPDO	ALL	No
		Display							

- 表示现在的控制模式。
- 定义和6060h(运行模式)相同。

Value	操作显示模式	简称	对应*1
-128~1	保留		
0	No mode change /no mode assigned (模式未变更/模式未设定)		Yes
1	Profile position mode(轮廓位置控制模式)	pp	Yes
2	Velocity mode (速度控制模式)	vl	No
3	Profile velocity mode(轮廓速度控制模式)	pv	Yes
4	Torque profile mode(轮廓转矩控制模式)	tq	Yes
6	Homing mode (原点回归位置控制模式)	hm	Yes
7	Interpolated position mode(插补位置控制模式)	ip	No
8	Cyclic synchronous position mode (周期位置控制模式)	csp	Yes
9	Cyclic synchronous velocity mode (周期速度控制模式)	csv	Yes
10	Cyclic synchronous torque mode (周期转矩控制模式)	cst	Yes
11~127	保留		

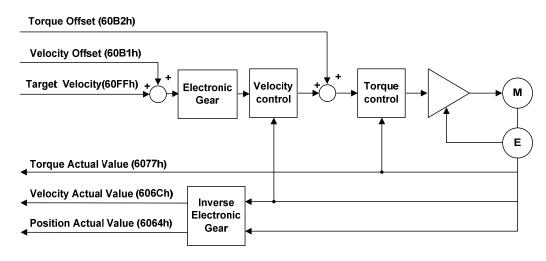

2. 切换控制模式时的注意事项

- 通过变更 6060h(运行模式)的值,可以切换控制模式。
- 请在 6061h(运行显示模式)确认现在的主轴驱动器的控制模式。
- 控制模式切换时,请更新和 6060h 同步的控制模式相关的 RxPDO 的对象。
- 在变更后的控制模式下,不支持的对象的值是不定的。
- 从控制模式变更时到切换完成需要花费 2ms。此期间 6061h 和控制模式相关的 TxPDO 的对象值是不定的。
- 控制模式的切换请执行在 20ms 以上。短于 20ms 间隔在控制模式连续切换的情况下会发异常。
- 控制模式的切换请一定在电机停止中进行。无法保证电机动作中(包含原点回归动作中、减速停止中)控制模式切换情况的动作。无法立即切换模式,或者会发生异常。
- 6060h=0 且 6061h=0 的状态下,如果转换驱动器状态到 "Operation enabled",会 发生异常动作。
- 6060h 设定 0 以外的值后,如果设定 6060h=0 则保持前次的控制模式。
- 如果设定 6060h 未对应的控制模式,驱动器会发生异常保护。

6.4.1 周期同步位置模式

Cyclic Synchronous Position Mode 是通过主站的 PDO 周期性更新,接收目标位置 (607Ah) 运行的模式。在此模式下,主站可以追加位置偏置(Position Offset 60B0h)、转矩偏置 (60B2h) 以及速度偏置 (60B1h)。

1. 结构图

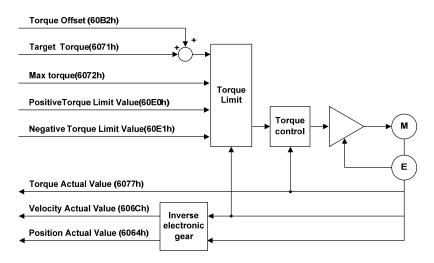


Index	Sub- Index	Name	Data Type	Access	PDO Mapping	Units
607Ah	-	目标位置 (Target Position)	DINT	RW	Yes	User Unit
60B0h	-	位置偏置 (Position Offset)	DINT	RW	Yes	User Unit
60B1h	-	速度偏置 (Velocity Offset)	DINT	RW	Yes	User Unit/s
60B2h	-	转矩偏置 (Torque Offset)	INT	RW	Yes	0.1%
6077h	-	实际转矩 (Torque Actual Value)	INT	RO	Yes	0.1%
606Ch	-	实际速度 (Velocity Actual Value)	DINT	RO	Yes	User Unit/s
6064h	-	实际位置 (Position Actual Value)	DINT	RO	Yes	User Unit

6.4.2 周期同步速度模式

在 Cyclic Synchronous Velocity Mode 中,主站向驱动器发送目标速度(60FFh),以此来控制速度。在此模式下,主站可以追加速度偏置(60B1h)、转矩偏置(60B2h)。

1. 结构图

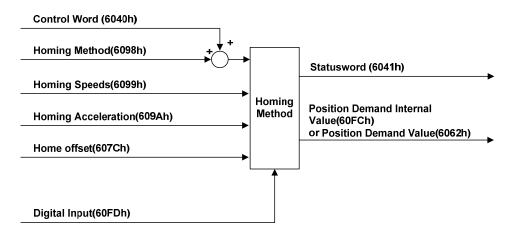


Index	Sub- Index	Name	Data Type	Access	PDO Mapping	Units
60FFh	-	目标速度 (Target Velocity)	DNIT	RW	Yes	User Unit/s
60B1h	-	速度偏置 (Velocity Offset)	DINT	RW	Yes	User Unit/s
60B2h	-	转矩偏置 (Torque Offset)	INT	RW	Yes	0.1%
6077h	-	实际转矩 (Torque Actual Value)	INT	RO	Yes	0.1%
606Ch	-	速度实际值 (Velocity Actual Value)	DINT	RO	Yes	User Unit/s
6064h	-	实际位置 (Position Actual Value)	DINT	RO	Yes	User Unit

6.4.3 周期同步转矩模式

在 Cyclic Synchronous Torque Mode 中,主站向驱动器指定目标转矩(6071h),以此控制转矩。在此模式下,主站可以追加转矩偏置(60B2h)。

1. 结构图

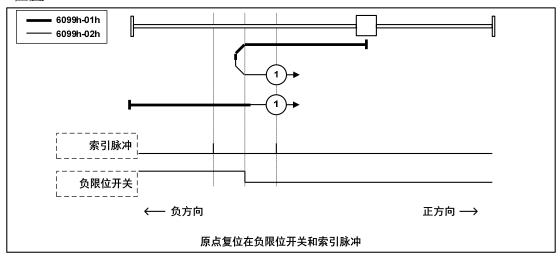


Index	Sub- Index	Name	Data Type	Access	PDO Mapping	Units
6071h	-	目标转矩 (Target Torque)	INT	RW	Yes	0.1%
6077h	-	转矩实际值 (Torque Actual Value)	INT	RO	Yes	0.1%
60B2h	-	转矩偏置 (Torque Offset)	INT	RW	Yes	0.1%
606Ch	-	实际速度 (Velocity Actual Value)	DINT	RO	Yes	User Unit/s
6064h	-	实际位置 (Position Actual Value)	DINT	RO	Yes	User Unit
6072h	-	转矩最大值(Max Torque)	DINT	RW	Yes	0.1%
60E0h	-	正转矩限制值 (Positive Torque Limit Value)	DINT	RW	Yes	0.1%
60E1h	-	负转矩限制值 (Negative Torque Limit Value)	DINT	RW	Yes	0.1%

6.4.4 原点回归模式(hm mode)

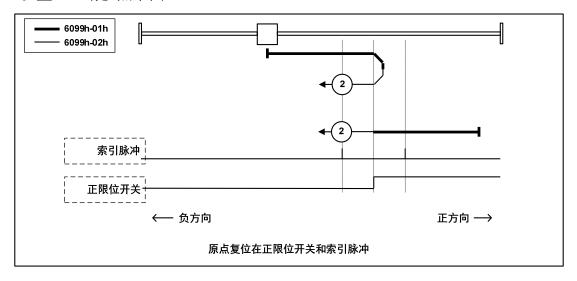
主站向驱动器发送原点回归方法,指定运动速度,在主轴驱动器内部生成位置指令执行原点回归动作的位置控制模式。如果电机带增量式编码器(或需要电池但未安装电池的绝对式编码器),且需要做绝对位置定位,上电后,有必要在执行位置定位工作前执行原点回归动作。

1. 结构图

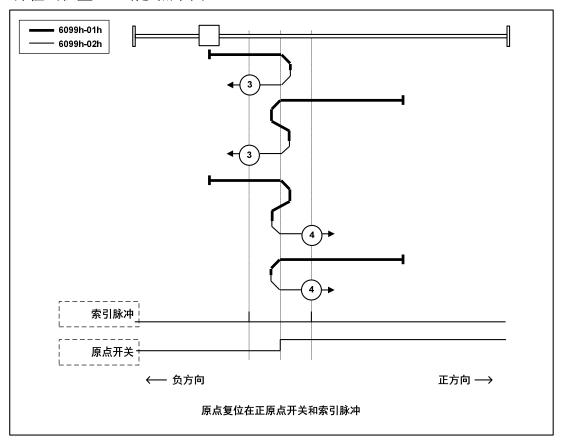

Index	Sub- Index	Name	Data Type	Access	PDO Mapping	Units
6040h	00h	Controlword	UNIT	RW	Yes	-
6041h	00h	Statusword	UINT	RO	Yes	-
607Ch	00h-	Home 偏置 (Home Offset)	DINT	RW	No	User Unit
6098h	00h-	Homing 方法 (Homing Method)	SINT	RW	Yes	-
	-	Homing 速度	-	-	-	-
	00h	项目的总数 (Number of entries)	USINT	RO	No	-
6099h	01h	搜索参考点信号速度 (Speed During Search for Switch)	U32	RW	RxPDO	User Unit/s
	02h	搜索零点信号速度 (Speed During Search for zero)	U32	RW	RxPDO	User Unit/s

Index	Sub- Index	Name	Data Type	Access	PDO Mapping	Units
607Dh	-	软件位置限值 (Software Position Limit)	-	-	-	-
	00h	项目的总数 (Number of entries)	USINT	RO	No -	
	01h	位置限制最小 (Min.position limit)	DINT	RW	No	User Unit
	02h	位置限制最大 (Max.position limit)	DINT	RW	No	User Unit
609Ah	-	Homing 加速度 (Homing Acceleration)	UDINT	RW	Yes	User Unit/s ²

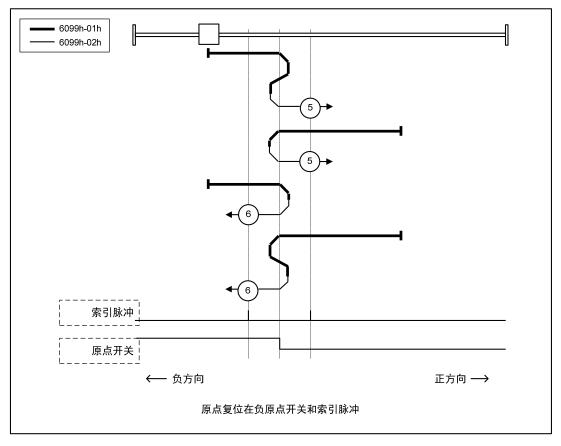
Index	Sub- Index	Name	Units	Range	Data Type	Access	PDO
6040h	00h	ControlWord		0~65535	U16	RW	RxPDO
6098h	00h	Homing Method		-128~127	18	RW	RxPDO
6099h	-	Homing Speeds		-	-	-	-
	00h	Number Of Entries		2	U8	RO	No
	01h	Speed During Searchfor Switch	User Unit/s	0~4294967295	U32	RW	RxPDO
	02h	Speed During SearchForzero	User Unit/s	0~4294967295	U32	RW	RxPDO
609Ah	00h	Homing Acceleration	User Unit/s ²	0~4294967295	U32	RW	RxPDO


方法 1

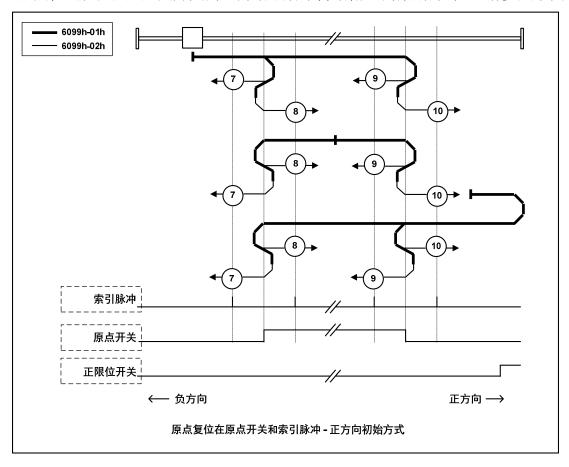
- 此方法是,如果未激活负限位开关,初始化动作方向是负方向。(图示为低电平状态下非激活状态)
- 原点检出位置是负限位信号为非激活后的在正方向侧位置的最初的索引脉冲检出 位置。


方法2

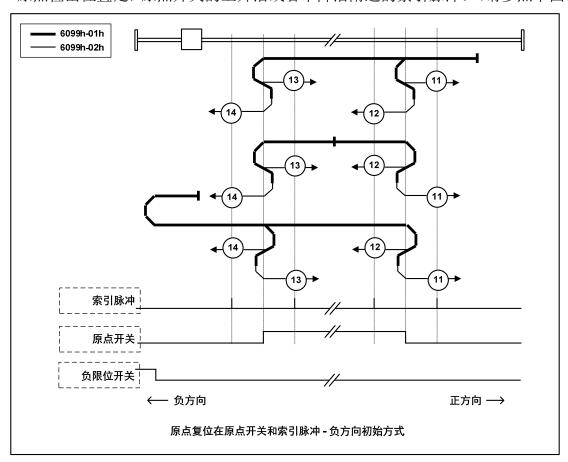
- 此方法是,如果未激活正限位开关,初始化动作方向是正方向。 (图示为低电平状态下非激活状态)
- 原点检出位置是正限位信号为非激活后的在负方向侧位置的最初的索引脉冲检出 位置。(请参照下图)


方法 3, 4

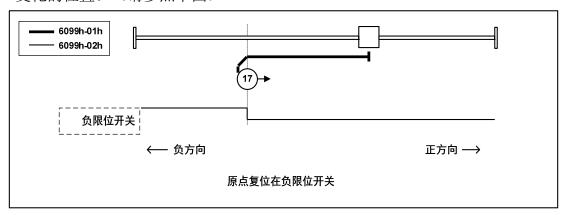
- 此方法是,基于启动时的原点开关的状态初始化动作方向变化。
- 原点检出位置是原点开关的状态变化后的负方向侧,或者负方向侧最初的索引脉冲检出位置。(请参照下图)


方法 5,6

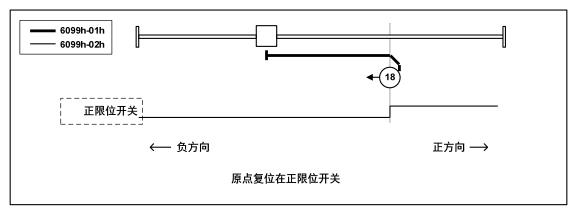
- 此方法是,基于启动时的原点开关的状态初始化动作方向变化。
- 原点检出位置是原点开关的状态变化后的负方向侧,或者正方向侧最初的索引脉冲检出位置。(请参照下图)


方法 7, 8, 9, 10

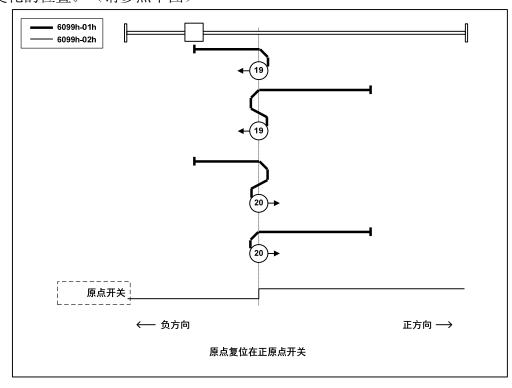
- 此方法是,使用原点开关和索引脉冲。
- 方法 7,8 的初始动作方向是原点开关如果在动作开始时已经激活,则为负方向。
- 方法 9,10 的初始化动作方向是原点开关如果在动作开始时已经激活,则为正方向。
- 原点检出位置是,原点开关的上升沿或者下降沿附近的索引脉冲。(请参照下图)


方法 11, 12, 13, 14

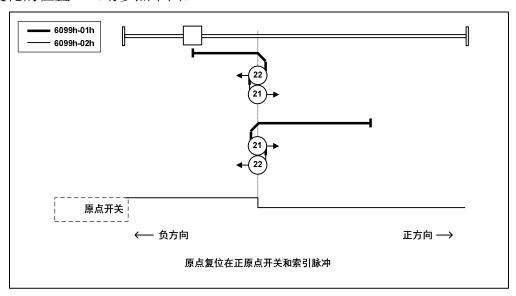
- 此方法是,使用原点开关和索引脉冲。
- 方法 11,12 的初始化动作方向是原点开关如果在动作开始时已经激活,则为正方向。
- 方法 13,14 的初始化动作方向是原点开关如果在动作开始时已经激活,则为负方向。
- 原点检出位置是,原点开关的上升沿或者下降沿附近的索引脉冲。(请参照下图)


方法 17

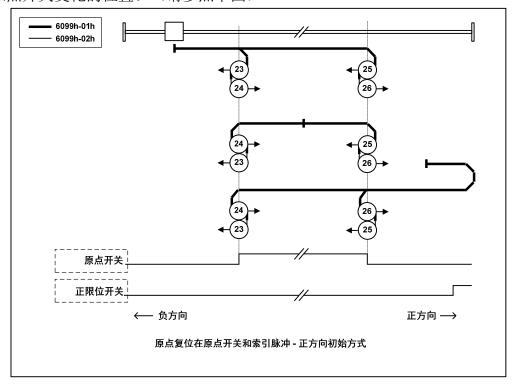
● 此方法是和方法 1 相似。不同的是,原点检出位置不是索引脉冲,而是限位开关 变化的位置。(请参照下图)


方法 18

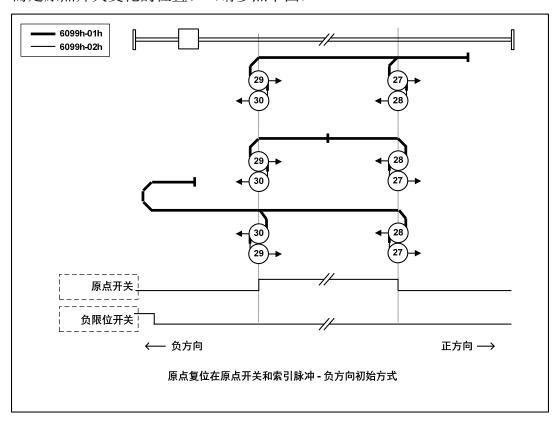
● 此方法和方法 2 相似。不同的是,原点检出位置不是索引脉冲,而是限位开关变化的位置。(请参照下图)


方法 19, 20

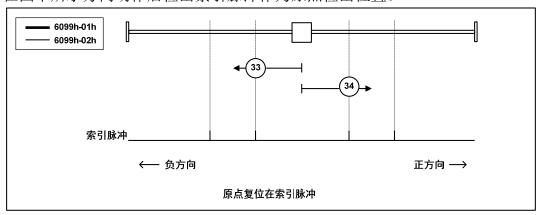
● 此方法和方法 3,4 相似。不同的是,原点检出位置不是索引脉冲,而是原点开关变化的位置。(请参照下图)


方法 21, 22

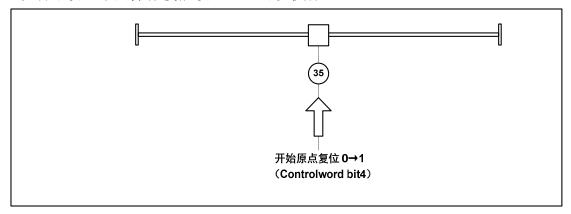
● 此方法和方法 5,6 相似。不同的是,原点检出位置不是索引脉冲,而是原点开关变化的位置。(请参照下图)


方法 23, 24, 25, 26

● 此方法和方法 7,8,9,10 相似。不同的是,原点检出位置不是索引脉冲,而是原点开关变化的位置。(请参照下图)


方法 27, 28, 29, 30

● 此方法是和方法 11,12,13,14 相似。不同的是,原点检出位置不是索引脉冲, 而是原点开关变化的位置。(请参照下图)

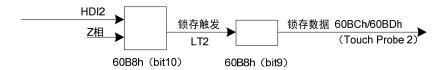

方法 33, 34

- 此方法是只使用索引脉冲。
- 在图中所示方向动作后检出索引脉冲作为原点检出位置。

方法 35

- 在执行主轴驱动器的坐标系的设定(位置信息的设定)时使用。
- 在原点回归启动时的点,以此位置为基准初始化(预置)下述的对象。 6062h(Position Demand Value)=6064h(Position Actual Value)=607Ch(Home Offset) 6063h(Position Actual Internal Value)=60FCh(Position Demand Internal Value)=0 注: 607Ch(Home Offset)被加算到 6062h以及 6064h中。
- 驱动器状态不是操作使能状态,也可以执行。

6.5 模式共通功能


6.5.1 Touch Probe 功能

本功能是从外部输入(HDI1、HDI2)或者是Z相(半闭环控制时是旋转编码器的单圈数据是0的位置)选择触发信号,锁定反馈位置。

- 触发信号的输入ON的宽度以及OFF的宽度请分别保持在2ms以上。
- 如果选择触发选择为Z相,请不要选择下降沿。
- 同一TouchProbe请不要同时设定上升沿和下降沿。
- 驱动器状态为Init和工作在hm模式的情况下,Touch probe功能无效。

1. Touch Probe 功能的构成

• 60B8h: Touch Probe Function

60B8h (Touch Probe Function)									
bit10	bit10 LT2 Bit2 LT1								
0	HDI2	0	HDI1						
1	1 Z相 1 Z相								

60BAh: Touch Probe Pos1 Pos Value
60BBh: Touch Probe Pos1 Neg Value
60BCh: Touch Probe Pos2 Pos Value
60BDh: Touch Probe Pos2 Neg Value

2. Touch Probe 关联对象

Index	Sub- Index	Name	Unit	Range	Date Type	Access	PDO
60B8h	00h	Touch Probe Function	-	0~65535	U16	RW	RxPDO
60B9h	00h	Touch Probe Status	-	0~65535	U16	RO	TxPDO
60BAh	00h	Touch Probe Pos1Pos Value	User Unit	-2147483648 ~2147483647	I32	RO	TxPDO
60BBh	00h	Touch Probe Pos1 Neg Value	User Unit	-2147483648 ~2147483647	I32	RO	TxPDO
60BCh	00h	Touch Probe Pos2 Pos Value	User Unit	-2147483648 ~2147483647	I32	RO	TxPDO
60BDh	00h	Touch Probe Pos2 Neg Value	User -2147483648 Unit ~214748364		I32	RO	TxPDO

(1) Touch probe function (60B8h)

Touch probe 动作的启动,各种设定使用的基本对象

Index	Sub-	Name/	Units	Range	Data	Acc	PDO	Op-	EEP-
mucx	Index	Description	Omis	Kange	Type	-ess	rbo	mode	ROM
		Touch Probe		0~	U16	RW	D.,DDO	ATT	Na
60B8h	00h	Function	-	65535	016	KW	RxPDO	ALL	No
				执行 Toucl	h Probe J	力能的设	设定		

对应 Bit 说明

bit	value	Note	
0	0	Switch off touch probe 1	Touch Probe 1
0	1	Enable touch probe 1	执行/停止
1	0	Trigger first event	Touch Probe 1 事件模
1	1	Continuous	式选择(单发/连续)
2	0	Trigger with touch probe 1 input	Touch Probe 1 触发选
2	1	Trigger with zero impulse signal of position encoder	择(外部输入/Z 相)
3	-	Reserved	未使用
4	0	Switch off sampling at positive edge of touch probe 1	Touch Probe 1
4	1	Enable sampling at positive edge of touch probe 1	上升沿选择
5	0	Switch off sampling at negative edge of touch probe 1	Touch Probe 1
3	1	Enable sampling at negative edge of touch probe 1	下降沿选择
6~7	~7 - Not Supported		未使用
8	0	Switch off touch probe 2	Touch Probe 2
8	1	Enable touch probe 2	执行/停止
9	0	Trigger first event	Touch Probe 2 事件模
9	1	Continuous	式选择(单发/连续)
10	0	Trigger with touch probe 2 input	Touch Probe 2 触发选
10	1	Trigger with zero impulse signal of position encoder	择(外部输入/Z 相)
11	-	Reserved	未使用
12	0	Switch off sampling at positive edge of touch probe 2	Touch Probe 2
12	1	Enable sampling at positive edge of touch probe 2	上升沿选择
13	0	Switch off sampling at negative edge of touch probe 2	Touch Probe 2
13	1 Enable sampling at negative edge of touch probe 2		下降沿选择
14~15	-	Not Supported	未使用

- 如果根据触发设定选择 Z 相,请不要选择下降沿。无法保证执行上述设定情况的动作。
- 所谓上升沿表示对象信号的理论状态从 OFF (非激活状态)到 ON (激活状态), 所谓下降沿表示对象信号的理论状态从 ON 到 OFF 变化的时间。

(2) Touch probe status (60B9h)

表示Touch probe动作的状态

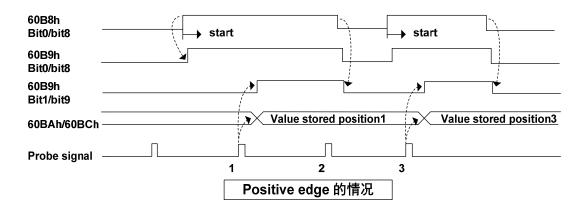
т 1	Sub-	Name/	TT '4	D	Data	Acc	DD-O	Op-	EEP-
Index	Index	Description	Units	Range	Type	-ess	PDO	mode	ROM
60B9h	00h	Touch Probe Status	-	0~ 65535	U16	RO	TxPDO	ALL	No
			<u>। </u>	支示 Touch	Probe 功	能的状	 代态		

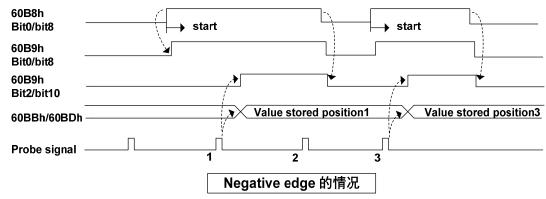
对应Bit说明

bit	value	N	Note			
0	0	Touch probe 1 is switch off	Touch Probe 1 动作停止			
U	1	Touch probe 1 is enabled	Touch Probe 1 动作中			
	0	Touch probe 1 no	上升沿 Touch Probe 1 未完成状态			
1		positive edge value stored				
	1	Touch probe 1	上升沿 Touch Probe 1 完成状态			
		positive edge value stored				
	0	Touch probe 1 no	下降沿 Touch Probe 1 未完成状态			
2		negative edge value stored	111111			
_	1	Touch probe 1	下降沿 Touch Probe 1 完成状态			
		negative edge value stored				
3~5	3∼5 - Reserved		未使用			
6~7	-	Not Supported	未使用			
8	0	Touch probe 2 is switch off	Touch Probe 2 动作停止			
o	1	Touch probe 2 is enabled	Touch Probe 2 动作中			
	0	Touch probe 2	上升汎 Taugh Broke 2 丰字成化太			
9	U	no positive edge value stored	上升沿 Touch Probe 2 未完成状态			
9	1	Touch probe 2	上升沿 Touch Probe 2 完成状态			
	1	positive edge value stored	上升有 Touch Probe 2 元风扒恋			
	0	Touch probe 2	下降汎 Tauch Proba 2 丰字成果太			
10	0	no negative edge value stored	下降沿 Touch Probe 2 未完成状态			
10	1	Touch probe 2	下吸机 TI DI- 2 字式华太			
	1	negative edge value stored	下降沿 Touch Probe 2 完成状态			
11~13	-	Reserved	未使用			
14~15	- Not Supported		未使用			

(3) Touch Probe Position 1/2 Positive Value (60BAh~60BDh)

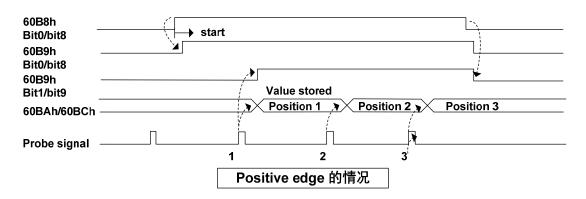
表示获取的锁存位置。

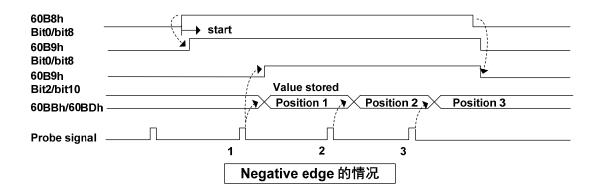

T 1	Sub-	Name/	U-	D	Data	Acc	DDO	Op-	EEP-		
Index	Index	Description	nits	Range	Type	-ess	PDO	mode	ROM		
		Touch Probe	User	-2147483648	I32	RO	Tx-	ALL	No		
60BAh	00h	Pos1 Pos Value	Unit	\sim 2147483647	132	KU	PDO	ALL	NO		
			表示 ′	Touch Probe 1的.	上升沿	锁存位	置。				
		Touch Probe	User	-2147483648	I32	RO	Tx-	ALL	No		
60BBh	00h	Pos1 Neg Value	Unit	\sim 2147483647	132	KO	PDO	ALL	110		
			表示'	Touch probe 1 的	下降沿	锁存位	置。				
		Touch Probe	User	-2147483648	I32	RO	Tx-	ALL	No		
60BCh	00h	Pos2 Pos Value	Unit	\sim 2147483647	132	KU	PDO	ALL	NO		
			表示 ′	Touch Probe 2的.	上升沿	锁存位	置。				
		Touch Probe	User	-2147483648	I32	RO	Tx-	ALL	No		
60BDh	00h	Pos2 Neg Value	Unit	~2147483647	132	KO	PDO	ALL	INU		
			表示 Touch Probe 2 的下降沿锁存位置。								


3. Touch probe 动作的起动

60B8h(Touch Probe Function)的bit0/bit8(Touch Probe执行/停止)从"0(停止)→1(启动)"变化的条件下,获取各种设定条件(60B8h: bit1~7/bit9~15),启动 Touch Probe动作。各种设定条件的变更有效,请bit0/bit8返回一次"0(停止)",然后再次到"1(启动)"。

根据60B8h(Touch Probe Function)的bit1/bit9(事件模式选择),可以选择"0(Trigger First event模式)"、"1(Continuous 模式)"。


● Trigger First Event 模式(60B8h: bit1=0 / bit9=0) 起动后,只在第一次的触发信号下嵌位的模式。为了再次获取,有必要再次起动 Touch Probe。



• Continuous 模式(60B8h: bit1=1 / bit9=1)

起动后,每次检出触发信号嵌位的模式。获取的值,被保持到下次的Probe锁存信号有效时刻。

6.5.2 停机功能

组合使用CoE(CiA402)定义的减速功能(选择代码)和驱动器的减速功能(EMG、动态制动器停止、自由运转停止、即时停止等)实现"停机功能"。

1. 驱动器选择代码一览

Index	Sub Index	Name	Units	Range	Date Type	Access	PDO
6007h	00h	Abort Connection Option Code	ı	0~3	I16	rw	No
605Ah	00h	Quick Stop Option Code	1	0~7	I16	rw	No
605Bh	00h	Shutdown Option Code	ı	0~1	I16	rw	No
605Ch	00h	Disable Operation Option Code	ı	0~1	I16	rw	No
605Eh	00h	Fault Reaction Option Code	1	0~2	I16	rw	No

2. 关联对象一览

Index	Sub- Index	Name/ Description	Units	Range	Data Type	Acc -ess	PDO	Op- mode	EEP- ROM
6084h	00h	Profile Deceleration	User Unit/s ²	0~ 4294967295	U32	RW	Rx- PDO	pp/ ip/pv	Yes

- 设定 Profile 减速度。
- 如果设定为 0,内部处理作为 1 操作。

Index	Sub-	Name/	Units	Damas	Data	Acc	PDO	Op-	EEPR
index	Index	Description	Omis	Range	Type	-ess	PDO	mode	OM
6085h	00h	Quick Stop Deceleration	User Unit/s ²	0~ 4294967295	U32	RW	Rx- PDO	pp/ip/p v/hm/c sp/csv	Yes

- 如果 605Ah (Quick stop option code) 是 "2"或者 "6",设定 Quick stop 时的电机减速停止使用的减速参数。
- 605Dh (Halt option code) 和 605Eh (Fault reaction option code) 是 "2" 是也被使用。
- 如果设定为 0,内部处理作为 1 操作。

Index	Sub- Index	Name/ Description	Units	Range	Data Type	Acc -ess	PDO	Op- mode	EEP- ROM
6087h	00h	Torque Slope	0.1%/s	0~ 4294967295	U32	RW	Rx- PDO	cst	Yes

- 设定因为给与倾向转矩指令的参数值。
- 周期同步转矩模式(cst)下只有减速停止时间时有效。
- 如果设定为 0,内部处理作为 1 操作。

Index	Sub- Index	Name/ Description	Units	Range	Data Type	Acc -ess	PDO	Op- mode	EEP- ROM
60C6h	00h	Max Deceleration	User Unit/s ²	0~ 4294967295	U32	RW	Rx- PDO	pp/h m/pv/ ip	Yes

- 设定最大减速度。
- 如果设定为 0,内部处理作为 1 操作。

(1) EMG 紧急停止

当DI中的EMG (紧急停机)ON时根据参数P164(紧急停机方式)的设置来执行紧急停止。

- P164=0时,驱动器直接切断电机电流,电机自由停止。
- P164=1 时,驱动器保持使能状态,控制电机以 6085h(Quick stop deceleration)所 定义的加减速停止。
- P164=2 时,减速停机,减速时间由 P063 决定。

(2) Quick Stop Option Code (605Ah)

设定电机减速停止方法

Index	Sub- Index	Name/ Description	Units	Range	Data Type	Access	PDO	Op- mode	EEP- ROM
605Ah	00h	Quick Stop Option Code	-	0~7	I16	RW	No	ALL	Yes

- 设定 Quick stop 的时序。根据控制模式定义有所不同。
- 下述值以外设定禁止。

csp, csv, hm

- 0: 电机自由停止后,迁移到 Switch on Disabled。
- 1: 通过 6084h(Profile Deceleration)电机停止后,迁移到 Switch On Disabled。
- 2: 通过 6085h (Quick Stop Deceleration) 电机停止后, 迁移到 Switch On Disabled。
- 3: 通过 60C6h(Max Deceleration)电机停止后,迁移到 Switch On Disabled。
- 5: 通过 6084h(Profile Deceleration)电机停止后,迁移到 Quick Stop Active。
- 6: 通过 6085h (Quick Stop Deceleration) 电机停止后, 迁移到 Quick Stop Active。
- 7: 通过 60C6h(Max Deceleration)电机停止后,迁移到 Quick Stop Active。

cst

- 0: 电机自由停止后,迁移到 Switch On Disabled。
- 1, 2: 通过 6087h(Torque Slope)电机停止后。迁移到 Switch On Disabled。
- 5, 6: 通过 6087h(Torque Slope)电机停止后,迁移到 Quick Stop Active。

(3) Shutdown Option Code (605Bh)

设定接收"ShutDown"和"Disable Voltage"命令时的电机减速停止的方法。

Index	Sub-	Name/	Units	Danga	Data	Agggg	PDO	Op-	EEP-
muex	Index	Description	Units	Range	Type	Access	rbo	mode	ROM
605Bh	00h	ShutDown Option Code	-	0~1	I16	RW	No	ALL	Yes

- 设定驱动器命令 "Shutdown"、"Disable voltage"接收时的时序。根据控制模式 定义有所不同。
- 下述值以外设定禁止。

命令 "Shutdown"接收时:

csp, csv, hm

- 0: 电机自由停止后,转换到 Ready to switch on。
- 1: 通过 6084h (Profile deceleration) 电机停止后,转换到 Ready to switch on。

cst

- 0: 电机自由停止后,转换到 Ready to switch on。
- 1: 通过 6087h(Torque slope)电机停止后,转换到 Ready to switch on。

(4) Disable Operation Option Code (605Ch)

设定接收"Disable operation"命令时的电机减速停止的方法。

Index	Sub- Index	Name/ Description	Units	Range	Data Type	Access	PDO	Op- mode	EEP- ROM
605Ch	00h	Disable peration option code	-	0~1	I16	RW	No	ALL	Yes

- 设定接收驱动器命令"Disable operation"时的时序。根据控制模式定义有所不同。
- 下述值以外设定禁止。

csp, csv, hm

- 0: 电机自由停止后转换到 switched on。
- 1: 通过 6084h (Profile deceleration) 电机停止后,转换到 switched on。

cst

- 0: 电机自由停止后转换到 switched on。
- 1: 通过 6087h(Torque slope)电机停止后,转换到 switched on。

(5) Fault Reaction Option Code (605Eh)

设定报警发生时的电机停止方法。

当故障发生时,制动器立即动作同时关pwm进入fault状态。

6.5.3 数字输入/数字输出

1. 数字输入(60FDh)

Index	Sub- Index	Name/ Description	Units	Range	Data Type	Acc -ess	PDO	Op- mode	EEP- ROM
60FDh	00h	Digital Inputs	-	0~ 4294967295	U32	RO	Tx- PDO	ALL	No

● 表示外部输入信号的理论输入状态。

bit	31	30	29	28	27	26	25	24		
功能	HDI2	HDI1				(reserved))			
bit	23	22	21	20	19	18	17	16		
功能	DI5	DI4	DI3	DI2	DI2 DI1 (reserved)					
bit	15	14	13	12	11	10	9	8		
功能				(reserved)						
bit	7	6	5	4	3	2	1	0		
功能		(reserve	ed)		(Not Supported)	home switch [REF]	positive limitswitch [POT]	negative limitswitch [NOT]		

注意要使用如下功能时,必须要将DI配置到相应的IO功能,否则会产生不可预料的结果。

bit19-23反应了DI1到DI5的原始IO状态,各Bit的详情如下:

Value	Definition							
0	Switched off	(理论输入状态OFF)						
1	Switched on	(理论输入状态ON)						

表示60FDh(Digital Inputs)的bit2(REF switch)、bit1(positive limit switch)、bit0(negative limitswitch)并行I/O连接器的近原点输入(HOME)、正方向驱动禁止输入(POT)、负方向驱动禁止输入(NOT)的信号状态。

2. **数字输出(60FEh**)

使用此对象如果执行set brake信号控制,一定要通过PDO使用。

	Sub-	Name/		,,,,,			Data		1	Ор-	EEP-
Index	Index	Descriptio	n U	nits		Range	Туре		PDO	mode	ROM
	Шаел	Digital	11				1370	CSS		mode	ROW
	-	Outputs		-		-		-	-	-	-
				寻的 车	 	り三极管	 劫作肘付	 ī 田 _		<u> </u>	
		bit	31		30	29	28	27	26	25	24
		功能	31		50	(Not Supported)				23	24
		bit	23	,	22	21	20	19	18	17	16
		DIL	23	23 22		21					
		功能	功能		(reserved)		NET	NET	NET	NET	NET
		1.4	1.5	T .	1 1	12	IO5	IO4	IO3	IO2	IO1
		bit	15		14	13	12	11	10	9	8
		功能		7 ((resei	$\frac{\text{ved}}{3}$	2		0
		bit	7		6	5	4	1	0		
		功能				(1	reserved)			set
60FEh											brake
OOI LII		Number o	f								
	00h	entries		-		2	U8	RO	No	ALL	No
		● 表示6	0FEh	的Sul	b-Ind	ex的数。				1	l
		Physical				0~			Rx-		
	01h	outputs		-	429	94967295	U32	RW	PDO	ALL	Yes
			小部输出	出信与		 俞出。		<u> </u>		<u> </u>	I
						0~			Rx-		
		Bit mask		-	429	94967295	U32	RW	PDO	ALL	Yes
	02h	● 设定为	与"1"目	寸,对	一应的	Physical	output正	常输出	为"0"时	寸,对应自	勺Physical
			输出无			-	•				-
	bit16-20可控制DO1~5的输出状态,注意需将DOx配置为NETIOx的功能,不支持bit										
	mask。										
	bit0为1	的时候表示	制动器	吸合	; 为	0的时候	表示制动	器释放	,支持bit	mask。	

6.5.4 位置信息

1. 位置信息的初始化时间

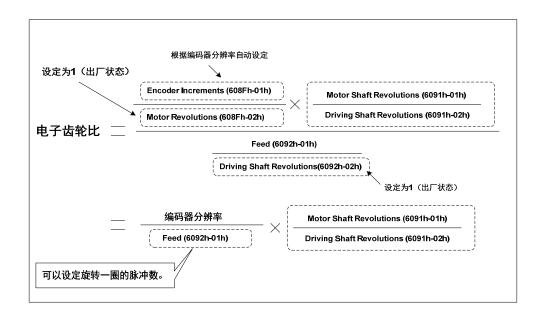
主轴驱动器在通信建立时(ESM状态Init→PreOP转换时),初始化以下的位置信息对象。

- 6062h (Position Demand Value)
- 6063h (Position Actual Internal Value)
- 6064h (Position Actual Value)
- 60FCh(Positon Demand Internal Value) 因此电子齿轮功能、极性、原点偏移等内容的生效是在在通信建立时执行。

2. 电子齿轮功能

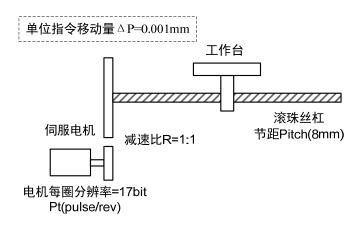
电子齿轮是将用户通过用户单位设定的移动量转换为进行实际移动驱动器内部所需脉冲数的功能。此功能的使用,可以任意设定每个用户单位的电机旋转移动量。EP5S系列未根据参数P027, P028(电机每旋转1次的指令脉冲数)、P029(电子齿轮分子)、P030(电子齿轮分母)设定的电子齿轮比,而是根据CiA402规定的对象608Fh(Position EncoderResolution)、6091h(Gear Ratio)、6092h(Feed Constant)设定电子齿轮比。

用户定义的单位(用户单位)和内部单位(pulse)的关系,根据下述方程式进行计算。


电子齿轮比 =
$$\frac{\text{Position Encoder Resolution} \times \text{Gear Ratio}}{\text{Feed Constant}}$$

Position Demand Value × 电子齿轮比=Position Demand Internal Value

注: 电子齿轮比在 1000 倍~1/1000 倍的范围内有效。如果超出范围则发生异常保护。


- 电子齿轮比的设定是从Init转换到PreOP的时刻生效。
- 电子齿轮比的值请设定在- 2^{31} (-2147483648) \sim + 2^{31} -1 (2147483647) 的范围内,如果超出范围则会发生异常。

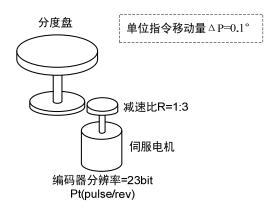
3. 电子齿轮计算公式

4. 电子齿轮举例

(1) 电子齿轮在滚珠丝杠应用

- 机械规格:滚珠丝杠节距 Pitch 为 8mm;减速比 1/1
- 编码器分辨率为 131072 (17bit)
- 用户单位 ΔP 为 0.001mm
- 负载轴转动一圈的指令脉冲数

$$Feed(6092h - 01h) = \frac{Pitch}{\Delta P} = \frac{8mm}{0.001mm} = 8000$$


● 计算电子齿轮比

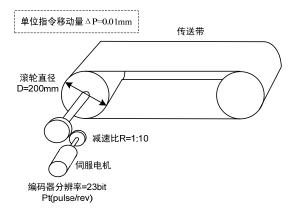
电子齿轮比 = 编码器分辨率
$$\frac{M \text{otor Shaft Revolution s}(6091\text{h} - 01\text{h})}{F \text{eed}(6092 h - 01h)} \times \frac{M \text{otor Shaft Revolution s}(6091\text{h} - 01\text{h})}{D \text{riving Shaft Revolution s}(6091\text{h} - 02\text{h})}$$

$$= \frac{131072}{8000} \times \frac{1}{1}$$

● 设置参数: Feed (6092h-01h) 设置为 8000, Motor Shaft Revolutions (6091h-01h) 设置为 1, Driving Shaft Revolutions (6091h-02h) 设置为 1。

(2) 电子齿轮在分度盘应用

- 机械规格:一圈的旋转角 360°;减速比 1/3
- 编码器分辨率为 8388608 (23bit)
- 用户单位 ΔP 为 0.1°
- 计算负载轴一转的指令脉冲数


Feed
$$(6092 h - 01h) = \frac{360^{\circ}}{\Lambda P} = \frac{360^{\circ}}{0.1^{\circ}} = 3600$$

● 计算电子齿轮比

电子齿轮比 =
$$\frac{$$
编码器分辨率}{Feed(6092 h - 01h)} \times \frac{Motor Shaft Revolution s(6091h - 01h)}{Driving Shaft Revolution s(6091h - 02h)}
$$= \frac{8388608}{3600} \times \frac{3}{1}$$

● 设置参数: Feed (6092h-01h) 设置为 3600, Motor Shaft Revolutions (6091h-01h) 设置为 3, Driving Shaft Revolutions (6091h-02h) 设置为 1。

(3) 电子齿轮在传送带应用

- 机械规格:滚轮直径 200mm;减速比 1/10
- 编码器分辨率为 8388608 (23bit)
- 用户单位 ΔP 为 0.01mm
- 负载轴转动一圈的指令脉冲数

Feed
$$(6092 h - 01h) = \frac{\pi D}{\Delta P} = \frac{3.14 \times 200 \text{ mm}}{0.01 mm} = 62800$$

● 计算电子齿轮比

电子齿轮比 =
$$\frac{$$
编码器分辨率}{Feed (6092 $h-01h$)} × $\frac{Motor Shaft Revolution s(6091h-01h)}{Driving Shaft Revolution s(6091h-02h)}$ = $\frac{8388608}{62800} \times \frac{10}{1}$

● 设置参数: Feed (6092h-01h) 设置为 62800, Motor Shaft Revolutions (6091h-01h) 设置为 10, Driving Shaft Revolutions (6091h-02h) 设置为 1。

5. 电子齿轮设定值的保存

电子齿轮关联对象(6091h-01h、6091h-02h、6092h-01h、6092h-02h)是保存对象。变更后推荐执行保存操作(写入EEPROM)。使用上位机软件的对象编辑器可以执行对象的设定、保存。

(1) Position Encoder Resolution (608Fh)

I., A.,	Sub-	Name/	II:4	D	Date	Acc	DDO	Op-	EEP-
Index	Index	Description	Units	Range	Type	-ess	PDO	mode	ROM
		Position							
		Encoder	-	-	-	-	-	-	-
	-	Resolution							
		● 编码器的	编码器的分辨率自动设定。						
		Highest							
	00h	Sub-Index	-	2	U8	RO	No	ALL	No
608Fh	OOH	Supported							
008FII		● 表示608F	h 的Sub-l	Index 的数。					
		Encoder	mulaa	$0\sim$	U32	RO	No	ALL	No
	01h	increments	pulse	4294967295	032	KO	NO	ALL	NO
		● 表示编码器移动量。值是编码器分辨率自动设定。							
		Motor	R	$0\sim$	U32	PO	No	AII	No
		Revolutions	(电机)	4294967295	032	RO	INO	ALL	110
		● 表示电机	旋转数。	值固定为1。					

此对象定义电机每旋转一圈的编码器分辨率,根据从和主轴驱动器连接的电机读出的信息自动设定。

Position Encoder Resolution = $\frac{\text{Encoder Increments} (608\text{Fh} - 01\text{h})}{\text{Motor Revolutions} (608\text{Fh} - 02\text{h})}$

例: 17bit/r 编码器连接的情况

608Fh-01h (Encoder Increments) =131072

608Fh-02h (Motor Revolutions) =1

Position Encoder Resolution = 131072 / 1=131072

(2) Gear ratio (6091h)

In day	Sub-	Name/	Lluita	Danas	Data	Acc	DDO	Op-	EEP-	
Index	Index	Description	Units	Range	Type	-ess	PDO	mode	ROM	
		Gear Ratio	-							
	1	● 设定齿轮	比。							
		Number of		2	U8	RO	No	ALL	No	
	00h	Entries	-	2	08	KO	INO	ALL	NO	
		● 表示 6091h 的 Sub-Index 的数。								
6091h		Motor	R	1~32767	U32	RW	No	ALL	Yes	
	01h	Revolutions	(电机)	1 32707	032	IXVV	NO	ALL	108	
		● 设定电机	旋转数。							
		Shaft	r (轴)	1~32767	U32	RW	No	ALL	Yes	
	02h	Revolutions	1(和)	1 32/07	032	IXW	110	ALL	168	
		● 设定轴旋	转数。							

此对象定义电机转数以及电子齿轮输出后的轴转数相关的内容。

 $Gearratio = \frac{MotorShaftRevolutions (6091h-01h)}{DrivingShaftRevolutions (6091h-02h)}$

(3) Feed Constant (6092h)

Index	Sub-	Name/	Units	Range	Data	Acc	PDO	Op-	EEP-
	Index	Description			Type	-ess		mode	ROM
		Feed	_	_	_	_	_	_	_
	-	Constant	_	_	_	_	_	_	_
		● 设定feed	常数。						
		Highest							
	00h	Sub-index	-	2	U8	RO	No	ALL	No
	OOH	Supported							
6092h		● 表示60921	n 的Sub-	Index 的数。					
		Eard	User	0-	1122	DW	Ma	A T T	Vas
	01h	Feed	Unit	4294967295	U32	RW	No	ALL	Yes
		● 设定feed	量。						
		Shaft	r(轴)	0-	1122	RW	No	ATT	Voc
	02h	Revolutions r (4294967295 U32		KW	No	ALL	Yes
		● 设定轴旋桨	转数。						

此对象表示电子齿轮输出后的轴每旋转1圈的动作量。

Feed Constant =
$$\frac{\text{Feed (6092h - 01h)}}{\text{Driving Shaft Revolutions (6092h - 02h)}}$$

(4) 极性(607Eh)

对于位置指令/速度指令/转矩指令以及每次的偏移,可以设定极性(电机旋转方向)。

Ī	Index	Sub-	Name/	Units	Data Data		Agggg	PDO	Op-	EEP-
	muex	Index	Description	Omis	Range	Type	Access	PDO	mode	ROM
Ī	607Eh	00h	Polarity	-	0~255	U8	RW	No	ALL	Yes

设定把位置指令、速度指令、转矩指令和位置偏移、速度偏移(速度加算)、转矩偏移(转矩加算)的值从对象传送到内部处理时的极性,和把位置反馈、速度反馈、转矩反馈的值从内部处理传送到对象时的极性。具体涉及到的对象如下:

● 指令设定类对象

607Ah (Target Position) 、60B0h (Position Offset) 、60FFh (Target Velocity) 、60B1h (Velocity Offset) 、6071h (Target Torque) 、60B2h (Torque Offset)

● 监测类对象

6062h (Position Demand Value) 、6064h (Position Actual Value) 、606Bh (Velocity Demand Value) 、606Ch (Velocity Actual Value) 、6074h (Torque Demand) 、6077h (Torque Actual Value)

● 外部输入类对象

60FDh-00h(Digital Input)的 bit1(positive Limit Switch(POT))、60FDh-00h(Digital Input)的 bit0(Negative Limit Switch(NOT))、外部输入信号的 POT、NOT

设定值	内容
0	位置、速度、转矩的符号没有反转
224	位置、速度、转矩的符号反转
上述以外	Not supported (请不要设定,无效果)

例:采用 17bit 绝对值编码器时,607Eh 的设置及影响如下表所示:

607E(设定值)	位置信息
0的情况	$6063h = M \times 2^{17} + S$
(CCW 为正方向)	6064h = (6063h×电子齿轮逆变换值) +607Ch
224 的情况	$6063h = - (M \times 2^{17} + S)$
(CW 为正方向)	6064h = (6063h×电子齿轮逆变换值) +607Ch

其中,6063h (Position Actual Internal Value)、6064h (Position Actual Value)、607Ch (Home offset)、M为多圈数据、S为单圈数据。

6.5.5 操作 **EEPROM** 的对象

使用对象 1010h 可对从站的 EEPROM 进行操作。

Index	Sub-	Name	Units	Range	Data	Access	PDO	Op-	EEP-
	Index	/Description			Type			mode	ROM
		Store	_	_	_	_	_	_	_
		Parameters							
	-	对象数据写入	EEPRO	$0{ m M}_{\circ}$					
		作为备用对象	的对象。	是对象清单的	EEPRO	M 栏中证	已载 "Ye	es"的对	象。
		Number of		0. 255	1.10	D.O.	NT	A 11	Nī
	00h	Entries	-	$0 \sim 255$	U8	RO	No	All	No
		值固定为1							
		Save All		$0\sim$	U32	RW	No	All	No
		Parameters	-	4294967295	032	KW	INO	AII	INO
		● 对象 1010h.01h 初始化的值为 0x01 。							
1010h		● 在需要保存参数的时候,通过 SDO 写对象 1010h.01h 值为(65766173h)。							
		● 在需要物	医复参数	缺省值的时	候,通	过 SDO	写对象	1010h.	01h 值为
		(64616f	6ch) 。						
		● 检测到对象 1010h.01h 的值为(65766173h)时,将触发一次保存驱动器							
	01h	参数 EEP	ROM 擤	操作(E-SET)	。在保存	字操作期间	司,SDC	的功能	需要暂时
		中止直到保存操作完成,否则会导致错误。							
		● 检测到对	象 1010	h.01h 的值为	(64616	f6ch)时,	将触发	之一次缺	省驱动器
		参数 EEPROM 操作(E-DEF)。在缺省操作期间,SDO 的功能暂时中							
				完成,否则会·			.,		,
				え EEPROM 操			EF)后,	如果操	作成功读
				运为 0 ;如果	`		,		
		101011.011	- H1 IEV		- VK II / C	, , , , , , , , , , , , , , , , , , ,	ти н	→ 1111	/ 🕽 🗓

- EEPROM 写入次数有限制。
- EEPROM 写入时间最长花费 10 秒(全部对象变更时)。

第7章 报警

7.1 报警一览表

报警	序	603Fh	1D 葡萄 わずわ	扣鞍凸穴	报警
代码	号	值	报警名称	报警内容	清除
	0 FF00h 无报警		无报警	工作正常	
Er 1	1	FF01h	超速	电机速度超过最大限制值	可
Er 2	2	FF02h	主电路过压	主电路电源电压超过规定值	可
Er 3	3	FF03h	FF03h 主电路欠压 主电路电源电压低于规定值		可
Er 4	4	FF04h	位置超差	位置偏差计数器的数值超过设定值	可
Er 7	7	FF07h	驱动禁止异常	CCWL、CWL 驱动禁止输入都无效	可
Er 8	8	FF08h	位置偏差计数器溢出	位置偏差计数器的数值的绝对值超 过 2 ³⁰	可
Er 9	9	FF09h	脉冲编码器信号故障	脉冲编码器信号故障	否
Er 10	10	FF0Ah	第二脉冲编码器信号故 障	第二脉冲编码器信号故障	否
Er 11	11	FF0Bh	功率模块过电流	功率模块发生故障	否
Er 12	12	FF0Ch	过电流	电机电流过大	否
Er 13	13	FF0Dh	过负载	电机过负载	可
Er 14	14	FF0Eh	制动峰值功率过负载	制动短时间瞬时负载过大	可
Er 15	15	FF0Fh	脉冲编码器计数错误	脉冲编码器计数错误	否
Er 16	16	FF10h	电机热过载	电机热值超过设定值(I²t 检测)	可
Er 17	17	FF11h	制动平均功率过载	制动长时间平均负载过大	可
Er 18	18	FF12h	功率模块过载	功率模块输出平均负载过大	可
Er 19	19	FF13h	第二脉冲编码器计数错 误	第二脉冲编码器计数错误	否
Er 20	20	FF14h	EEPROM 错误	EEPROM 读写时错误	否
Er 21	21	FF15h	逻辑电路出错	处理器外围逻辑电路故障	否
Er 22	22	FF16h	功率板和控制板不匹配	更换功率板或者控制板	否
Er 23	23	FF17h	AD 转换错误	电路或电流传感器错误	否
Er 24	24	FF18h	控制电源电压低	控制电路 LDO 故障	可
Er 25	25	FF19h	FPGA 校验错误	FPGA 校验出错	否
Er 26	26	FF1Ah	UVW 缺相报警	检查 UVW 动力线是否连接正常	可
Er 27	27	FF1Bh	缺相报警	检查动力线是否为三相输入	可

报警代码	序 号	603Fh 值	报警名称	报警内容	报警清除
Er 28	28	FF1Ch	驱动器断电上抬报警	开启驱动器断电上抬功能后, L1、L2、L3 输入缺相时报此故 障,同时驱动器执行上抬动作	可
Er 29	29	FF1Dh	转矩过载报警	电机负载超过用户设定的数值 和持续时间	可
Er 30	30	FF1Eh	脉冲编码器Z信号丢失	脉冲编码器Z信号丢失	否
Er 32	32	FF20h	全闭环两个编码器位置偏 差超限	全闭环两个编码器位置偏差超限	否
Er 33	33	FF21h	功率板参数设置错误	功率板电压点参数设置错误	可
Er 34	34	FF22h	功率板参数写入错误	功率板电压点参数写入错误	可
Er 35	35	FF23h	板间连接故障	驱动内连接通路故障	可
AL 36	36	FF24h	风扇报警	风扇故障	可
Er 37	37	FF25h	第二脉冲编码器 Z 信号丢 失	第二脉冲编码器 Z 信号丢失	否
Er 38	38	FF26h	STO 信号异常	STO 信号异常	可
Er 40	40	FF28h	绝对值编码器通讯错误	驱动与编码器无法通信	否
Er 41	41	FF29h	绝对值编码器握手错误	绝对值编码器握手错误	否
Er 42	42	FF2Ah	绝对值编码器内部计数错 误	绝对值编码器计数异常	否
Er 43	43	FF2Bh	绝对值编码器通讯应答错 误	绝对值编码器通讯应答异常	否
Er 44	44	FF2Ch	绝对值编码器校验错误	绝对值编码器内容错误	否
Er 45	45	FF2Dh	绝对值编码器 EEPROM 错误	绝对值编码器的 EEPROM 故障	否
Er 46	46	FF2Eh	绝对值编码器参数错误	绝对值编码器参数被破坏	否
Er 47	47	FF2Fh	绝对值编码器外接电池故 障	电池电压过低	否
Er 48	48	FF30h	绝对值编码器外接电池报 警	电池电压偏低	否
Er 49	49	FF31h	编码器过热	编码器过热	否
Er 51	51	FF33h	编码器自动识别失败	编码器自动识别失败	否
Er 57	57	FF39h	编码器多圈故障	编码器多圈故障	否
Er 58	58	FF3Ah	编码器多圈设置值超范围	编码器多圈设置值超范围	否
Er 61	61	FF3Dh	以太网通讯周期偏差过大	以太网通讯周期偏差过大	否
Er 62	62	FF3Eh	以太网指令数据超出范围	以太网指令数据超出范围	可

报警 代码	序号	603Fh 值	报警名称	报警内容	报警 清除
AL 68	68	FF44h	EtherCAT 操作 EEPROM 失败	EtherCAT 操作 EEPROM 失败	可
Er 70	70	FF46h	以太网总线接口硬件错误	以太网总线接口硬件错误	否
Er 75	75	FF4Bh	以太网总线接口数据交换 错误	以太网总线接口数据交换错误	否
AL 77	77	FF4Dh	搜寻参考点挡块失败	搜寻参考点挡块失败	可
AL 78	78	FF4Eh	搜寻零脉冲失败	搜寻零脉冲失败	可
AL 85	85	FF55h	负向软限位超限	轴位置超出负向软限位点	可
AL 86	86	FF56h	正向软限位超限	轴位置超出正向软限位点	可
Er 88	88	FF58h	使能时没有设置操作模式	使能时没有设置操作模式	可
Er 89	89	FF59h	设置的操作模式无效	设置无效的操作模式	可
Er 90	90	FF5Ah	动态制动故障	动态制动异常打开或者关闭	可
Er 91	91	FF5Bh	振动故障	振动故障	可
AL 92	92	FF5Ch	功率模块温度警告	功率模块温度警告	可
Er 93	93	FF5Dh	功率模块温度报警	功率模块温度报警	否
Er100	100	FF64h	主轴编码器设置异常	主轴编码器设置异常	否
Er101	101	FF65h	主轴飞车报警	主轴飞车	可
Er106	106	FF6Ah	主轴准停报警	主轴准停减速阶段增益切换异 常	否
AL110	110	FF6Eh	龙门通信警告	龙门同步主从轴通信异常	可
AL111	111	FF6Fh	龙门主从轴位置偏差过大 警告	龙门主从轴位置偏差过大警告	可
Er112	112	FF70h	龙门主从轴位置偏差过大 报警	龙门主从轴位置偏差过大报警	可
Er113	113	FF71h	龙门快速停机报警	龙门运行中另一轴有报警发 生,本轴立刻快速停机报警	可
Er114	114	FF72h	龙门回零错误报警	龙门模式下回零出现错误	可
Er120	120	FF78h	直线电机寻相方向错误	直线电机寻相方向错误	否
Er121	121	FF79h	直线电机寻相异常	直线电机寻相异常	否
Er130	130	FF82h	无位置传感器模式堵转报 警	无位置传感器模式堵转报警	否
Er150	150	FF96h	参数辨识极对数辨识出错	参数辨识极对数辨识出错	否
Er200	200	FFC8h	增量电机寻相时未发生移 动报警	增量电机寻相时未发生移动	可
Er202	202	FFCAh	增量电机模式下触发无感 运行模式报警	增量电机模式下触发无感运行	否

报警	序	603Fh	报警名称	报警内容	报警
代码	号	值	拟言石物	拟言內分	清除
E-202	203	EECD1	ABZ 编码器低分辨率模式	ABZ 编码器低分辨率模式测速	否
Er203	203	FFCBh	测速错误	错误	白
Er204	204	FFCCh	ABZ 编码器低分辨率模式	ABZ 编码器低分辨率模式下补	否
E1204	204	FFCCII	下补偿模式错误	偿模式错误	Ė
Er998	998		授权异常	授权异常	否
AL999	999		本地指令生效警告	本地指令生效警告	可

7.2 报警原因和处理

本使用手册中"☆"表示配多圈绝对值码盘特有功能, "★"表示配增量式码盘 特有功能。

Er 1(超速)

原因	检查	处理
电机接线 U、V、W 相序	│ │检查 U、V、W 接线	正确连接 U、V、W 接线,与驱动
错误	位旦 U、V、W 按线 	器插头的 U、V、W 标号一一对应
电机速度超调	 检查运行状态,查看参数	调整伺服增益,使其减小超调;速
电机速浸起调	位旦运行状态,旦有多数 	度控制时,可增大加减速时间
编码器接线错误	检查编码器接线	正确接线
绝对值编码器分辨率设置	检查编码器分辨率参数 P832	正确设置编码器分辨率
错误		正佛以且姍떡益刀湃率

Er 2(主电路过压)

原因	检查	处理
输入交流电源过高	检查电源电压	使电压符合产品规格
再生制动故障	再生制动电阻、制动管是否失 效或接线断开	维修
再生制动能量过大	查看制动负载率	 降低起停频率 增加加减速时间 减小转矩限制值 减小负载惯量 更换更大功率驱动器和电机 更换阻值更小,功率更大的制动电阻

Er 3(主电路欠压)

原因	检查	处理
主电源供电异常,小于额 定值的一半	检查主电源供电	使电压符合产品规格
驱动器硬件问题	检查驱动器硬件	维修

Er 4(位置超差)

原因	检查	处理
电机接线 U、V、W 相序 错误	检查 U、V、W 接线	正确连接电机 U、V、W 接线,与 驱动器插头的 U、V、W 标号—— 对应
编码器零点变动	检查编码器零点	断开负载,重新将编码器调零
电机卡死	检查电机及机械连接部分	维修
指令脉冲频率太高	检查输入频率、脉冲分倍频参 数	● 降低输入频率● 调整脉冲分倍频参数
位置环增益太小	检查参数 P009	增加位置环增益
超差检测范围太小(默认4圈)	检查参数 P080	增加参数 P080 数值
转矩不足	查看转矩	● 增加转矩限制值● 增加位置指令平滑滤波时间● 减小负载● 更换更大功率驱动器和电机

Er 7(驱动禁止异常)

原因	检查	处理
伺服使能时 CCWL、CWL 驱动禁止输入都无效	检查 CCWL、CWL 接线	● 正确输入 CCWL、CWL 信号● 若不使用 CCWL、CWL 信号, 可设置参数 P097 屏蔽

Er 8(位置偏差计数器溢出)

原因	检查	处理
电机卡死	检查电机及机械连接部分	检修
指令脉冲异常	检查脉冲指令	

Er 9(脉冲编码器信号故障)

原因	检查	处理
编码器接线错误	检查编码器接线	正确接线
编码器电缆和接插件不良	检查电缆和接插件	更换电缆和接插件
电机型号未设置正确	检查电机型号	重新设置电机型号
编码器损坏	检查编码器	更换编码器

Er 10(第二脉冲编码器信号故障)

原因	检查	处理
编码器接线错误	检查编码器接线	正确接线
编码器电缆和接插件不良	检查电缆和接插件	更换电缆和接插件
电机型号未设置正确	检查电机型号	重新设置电机型号
编码器损坏	检查编码器	更换编码器

Er 11(功率模块过电流)

原因	检查	处理
电机接线 U、V、W 之间 短路	检查 U、V、W 接线	正确连接 U、V、W 接线
电机绕组绝缘损坏	检查电机	更换电机
驱动器损坏	检查驱动器	电机无问题,再次上电还是报警, 可能是驱动器损坏
接地不良	检查接地线	正确接地
受到干扰	检查干扰源	增加线路滤波器,远离干扰源

Er 12(过电流)

原因	检查	处理
电机接线 U、V、W 之间 短路	检查 U、V、W 接线	正确连接U、V、W接线
电机绕组绝缘损坏	检查电机	更换电机
驱动器损坏	检查驱动器	电机无问题,再次上电还是报警, 可能是驱动器损坏

Er 13(过负载)

原因	检查	处理
超过额定负载连续运行	查看负载率	降低负载或换更大功率驱动器
系统不稳定	检查电机运行是否振荡	降低系统增益
加减速太快	检查电机运行是否平顺	加大加减速时间
编码器零点变动	检查编码器零点	重新安装编码器并调零

Er 14(制动峰值功率过载)

原因	检查	处理
输入交流电源偏高	检查电源电压	使电压符合产品规格
再生制动故障	再生制动电阻、制动管是否失 效或接线断开	维修
再生制动能量过大	查看制动负载率	降低起停频率增加加减速时间更换更大功率驱动器和电机更换阻值更小,功率更大的制动电阻
接线错误	● B1、B2 是否未短接 ● 检查驱动器型号,是否需 要连接外接制动电阻使用 ● 确保相关参数设置合适	● 将 B1、B2 短接 ● 连接外接制动电阻使用

Er 15(脉冲编码器计数错误)

原因	检查	处理
编码器接线错误	检查编码器接线	正确接线,包括屏蔽线
接地不良	检查接地线	正确接地
受到干扰	检查干扰来源	远离干扰
编码器问题	线数和极数不对编码器 Z 信号错误编码器损坏	更换编码器

Er 16(电机热过载)

原因	检查	处理
超过额定负载长时间运行	查看负载率和电机温升	降低负载或换更大功率驱动器
编码器零点变动	检查编码器零点	重新安装编码器并调零

Er 17(制动平均功率过载)

原因	检查	处理
输入交流电源偏高	检查电源电压	使电压符合产品规格
再生制动能量过大		● 降低起停频率
		● 增加加减速时间
	 查看制动负载率	● 减小转矩限制值
	旦目前幼贝钗平	● 减小负载惯量
		● 更换更大功率驱动器和电机
		● 更换更大制动电阻

Er 18(功率模块过载)

原因	检查	处理
超过额定负载长时间运行	查看电流	降低负载或换更大功率驱动器
编码器零点变动	检查编码器零点	重新安装编码器并调零

Er 19(第二脉冲编码器计数错误)

原因	检查	处理
编码器接线错误	检查编码器接线	正确接线,包括屏蔽线
接地不良	检查接地线	正确接地
受到干扰	检查干扰来源	远离干扰
编码器问题	● 线数和极数不对● 编码器 Z 信号错误● 编码器损坏	更换编码器

Er 20(EEPROM 错误)

原因	检查	处理
EEPROM 芯片损坏	重新上电检查	故障不消失,请更换驱动器

Er 21(逻辑电路出错)

原因	检查	处理
控制电路故障	重新上电检查	故障不消失,请更换驱动器

Er 22(功率板和控制板不匹配)

原因	检查	处理
控制板和功率板不匹配	是否自行更换过控制板	使用和功率板相匹配的控制板

Er 23(AD 转换错误)

原因	检查	处理
电流传感器及接插件问题	查看主电路	故障不消失,请更换驱动器
控制板相关元件虚焊	检查控制电路	故障不消失,请更换驱动器

Er 24(控制电源电压低)

原因	检查	处理
控制电路 LDO 故障	检查控制板电源	更换驱动器

Er 25(FPGA 校验错误)

原因	检查	处理
FPGA 校验错误	重新上电检查	故障不消失, 请更换驱动器

Er 26(UVW 缺相报警)

原因	检查	处理
电机 UVW 线缆损坏或未 接	检查电机 UVW 接线	正确接线

Er 27(缺相报警)

原因	检查	处理
动力电源缺相	检查 L1, L2, L3 接线	正确接线
动力电源欠压	检查供电电压	确保正确的电压输入
缺相检查回路故障	检查光耦, 重新上电	故障不消失,请更换驱动器

Er 28(驱动器断电上抬报警)

原因	检查	处理
动力电源缺相	检查 L1, L2, L3 接线	正确接线
动力电源欠压	检查供电电压	确保正确的电压输入
缺相检查回路故障	检查光耦,重新上电	故障不消失,请更换驱动器

Er 29(转矩过载报警)

原因	检查	处理
意外大负载发生	检查负载情况	调整负载
参数 P070、P071、P072	检查参数	调整参数
设置不合理		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Er 30(脉冲编码器 Z 信号丢失)

原因	检查	处理
编码器问题	查看编码器 Z 信号	更换编码器
编码器电缆和接插件问题	检查电缆和接插件	更换电缆和接插件
驱动器接口电路故障	检查控制电路	更换驱动器

Er 32(全闭环两个编码器位置偏差超限)

原因	检查	处理
位置反馈编码器反馈位置 和速度反馈编码器反馈位 置偏差超过 P884 设定值	检查编码器位数,方向及行程 参数	设置合理编码器参数

Er 33(功率板参数设置错误)

原因	检查	处理
功率板电压点参数设置值		
超限或者不满足过压>制	- 人 本社委长中国会验识署传	
动开>制动关>继电器吸合	检查功率板电压参数设置值	设置合理功率板电压参数设置值
等关系		

Er 34(功率板参数写入错误)

原因	检查	处理
功率板电压点参数写入功	● 检查排线及其端子	故障不消失,请更换驱动器
率板过程错误	● 检查光耦	以

Er 35(板间连接故障)

原因	检查	处理
板间连接的排线故障	检查排线及其端子	故障不消失,请更换驱动器
连接通路故障	检查光耦	故障不消失,请更换驱动器

AL 36(风扇故障)

原因	检查	处理
散热风扇故障	检查风扇	更换风扇
风扇接线回路故障	检查接线	正确接线
风扇检测回路故障	检查光耦	故障不消失,请更换驱动器

Er 37(第二脉冲编码器 Z 信号丢失)

原因	检查	处理
编码器问题	查看编码器 Z 信号	更换编码器
编码器电缆和接插件问题	检查电缆和接插件	更换电缆和接插件
驱动器接口电路故障	检查控制电路	更换驱动器

Er 38(STO 信号异常)

原因	检查	处理
STO1或者STO2信号异常	检查硬件版本检查软件版本检查 STO1 和 STO2 信号 接线	更换驱动器更新驱动器固件正确接线

Er 40(绝对值编码器通讯错误)

原因	检查	处理
更换了不同类型的电机	更换的电机编码器是否为同 类型	设置 P088=0,自动识别编码器
编码器接线错误	检查编码器接线	正确接线
编码器电缆和接插件不良	检查电缆和接插件	更换电缆和接插件
编码器损坏	检查编码器	更换编码器

Er 41(绝对值编码器握手错误)

原因	检查	处理
编码器接线错误	检查编码器接线	正确接线
编码器电缆和接插件不良	检查电缆和接插件	更换电缆和接插件
编码器损坏	检查编码器	更换编码器

Er 42(绝对值编码器内部计数错误)

原因	检查	处理
编码器电缆和接插件不良	检查电缆和接插件	更换电缆和接插件
编码器损坏	检查编码器	更换编码器

Er 43(绝对值编码器通讯应答错误)

原因	检查	处理
编码器电缆和接插件不良	检查电缆和接插件	更换电缆和接插件
编码器损坏	检查编码器	更换编码器

Er 44(绝对值编码器校验错误)

原因	检查	处理
编码器电缆和接插件不良	检查电缆和接插件	更换电缆和接插件
编码器损坏	检查编码器	更换编码器

Er 45(绝对值编码器 EEPROM 错误)

原因	检查	处理
编码器电缆和接插件不良	检查电缆和接插件	更换电缆和接插件
编码器 EEPROM 损坏	检查编码器	更换编码器

Er 46(绝对值编码器参数错误)

原因	检查	处理
编码器电缆和接插件不良	检查电缆和接插件	更换电缆和接插件
编码器 EEPROM 损坏	检查编码器	更换编码器

Er 47(绝对值编码器外接电池故障)

原因	检查	处理
外部电池没电	外部电池电压	更换电池
更换电池后第一次上电	电池电压	若电压正常,请重启编码器,参考 3.6.1 节

Er 48(绝对值编码器外接电池报警)

原因	检查	处理
外部电池没电	外部电池电压	更换电池
更换电池后第一次上电	电池电压	若电压正常,请重启编码器,参考 3.6.1 节

Er 49(编码器过热)

原因	检查	处理
编码器过热	是否适配电机的功率过小或 环境温度过高	更换合适功率等级或温度等级的电机降低环境温度

Er 51(编码器自动识别失败)

原因	检查	处理
编码器接线错误	检查编码器接线	正确接线
编码器自动识别失败	确认编码器种类是否为驱动 器支持的	更换驱动器支持种类的编码器

Er 57(编码器多圈故障)

原因	检查	处理
读取编码器多圈异常	检查编码器设置	更改编码器设置
开启自定义多圈后第一次 上电报警	驱动器断电重启	驱动器断电重启

Er 58(编码器多圈设置值超范围)

原因	检查	处理
当前编码器多圈设置与乘 编码器单圈值的乘积超过 2 ³¹	检查编码器多圈设置值	设置合理的编码器多圈设置值

Er 61(以太网通讯周期偏差过大)

原因	检查	处理
工业以太网通信中断	检查以太网线缆	更换以太网线缆
17 子网络停用粗料部分子	● 增加通信周期时间	● 增加通信周期时间
以太网通信周期抖动过大	● 减小主站负载	● 减小主站负载

Er 62(以太网指令数据超出范围)

原因	检查	处理
当前通信周期指令数据超	● 检查用户单位设置	● 改变用户单位设置
限	● 检查电子齿轮设置	● 改变电子齿轮设置

AL 68(EtherCAT EEPROM 操作失败)

原因	检查	处理
EtherCAT 操作 EEPROM 失败	重新上电检查	故障不消失,请更换驱动器

Er 70(以太网总线接口硬件错误)

原因	检查	处理
以太网总线接口硬件错误	重新上电检查	故障不消失, 请更换驱动器

Er 75(Ethercat 总线接口数据交换错误)

原因	检查	处理
Ethercat 总线接口数据交	重新上电检查	故障不消失,请更换驱动器
换错误	里	战 厚 个有大,

AL 77(搜寻参考点挡块失败)

原因	检查	处理
搜寻参考点行程中没有找	● 检查 REF 信号接线	● 检查 REF 信号接线
到 REF 信号	● 检查相关配置	● 检查相关配置

AL 78(搜寻零脉冲失败)

原因	检查	处理
搜寻零脉冲行程中没有找 到零脉冲	检查相关配置	检查相关配置

AL 85(负向软限位超限)

原因	检查	处理
轴位置超出负向软限位点	清除错误,发送限位方向相反 指令	清除错误,发送限位方向相反指令

AL 86(正向软限位超限)

原因	检查	处理
轴位置超出正向软限位点	清除错误,发送限位方向相反指令	清除错误,发送限位方向相反指令

Er 88(使能时没有设置操作模式)

原因	检查	处理
使能时没有设置操作模式	使能时操作模式的设置	设置操作模式后再加使能

Er 89(设置的操作模式无效)

原因	检查	处理
设置无效的操作模式	操作模式的设置	根据 6502h 设置有效的操作模式

Er 90(动态制动故障)

原因	检查	处理
动态制动继电器状态异常	重新上电检查	故障不消失, 请更换驱动器

Er 91(振动故障)

原因	检查	处理
机械发生振动	检查机械结构或增益相关参 数	降低增益相关参数

AL 92(功率模块温度警告)

原因	检查	处理
功率模块问题超过参数设	● 检查机柜散热情况	● 改善机柜散热条件
定值	● 检查设备负载情况	● 排查负载异常问题

Er 93(功率模块温度报警)

原因	检查	处理
共卖营护组度十工 125°0	● 检查机柜散热情况	● 改善机柜散热条件
功率模块温度大于 125℃	● 检查设备负载情况	● 排查负载异常问题

Er 100(辅助编码器设置异常)

原因	检查	处理
	● 检查设备是否配置辅助编	
辅助编码器设置异常	码器	更改辅助编码器设置
	● 检查辅助编码器设置	

Er 101(主轴飞车报警)

原因	检查	处理
速度给定与速度反馈持续 差值过大	查编码器分辨率和方向是否 设置正确以及是否可以正确 读取位置速度信息	更改编码器方向参数或分辨率参数

Er 106(主轴准停报警)

原因	检查	处理
主轴准停增益切换过程异 常	检查增益切换相关参数设置	检查增益切换相关参数设置

AL 110(龙门通信警告)

原因	检查	处理
龙门主从轴之间通信连续 出错	◆ 检查龙门通信线缆连接◆ 检查主从轴外壳接地◆ 检查 EC 驱动器是否进入OP 模式	更换龙门通信线缆

AL 111(龙门主从轴位置偏差过大警告)

原因	检查	处理
	● 检查主从轴运行方向设置	● 放大龙门同步最大位置偏差设
龙门主从轴的位置扭偏过	● 检查龙门同步最大位置偏	定参数
大	差设定参数	● 优化主从轴单轴增益
	● 检查龙门机械结构	● 优化龙门增益

Er 112(龙门主从轴位置偏差过大报警)

原因	检查	处理
	● 检查主从轴运行方向设置	● 放大龙门同步最大位置偏差设
龙门主从轴的位置扭偏过	● 检查龙门同步最大位置偏	定参数
大	差设定参数	● 优化主从轴单轴增益
	● 检查龙门机械结构	● 优化龙门增益

Er 113(龙门快速停机报警)

原因	检查	处理
龙门运行中另一轴有报警 发生	检查另一轴报警原因	检查另一轴报警原因

Er 114(龙门回零错误报警)

原因	检查	处理
	● 检查龙门回零方式参数设	● 确保龙门正常运行
龙门模式下回零出现错误	置	● 根据实际机械回零条件正确设
	● 检查龙门是否正常运行	置龙门回零参数

Er 120(直线电机寻相方向错误)

原因	检查	处理
	检查编码器方向设置以及是	
直线电机在寻相时实际移	否可以正常读到位置与速度	重启重新寻相,如依然报警尝试修
动方向与编码器方向相反	反馈值,以及考虑是否是负载	改编码器方向参数
	过重	

Er 121(直线电机寻相异常)

原因	检查	处理
	检查编码器是否正确接线,是	
	否可以正常读到位置与速度	
直线电机在寻相过程中进	信息,编码器分辨率是否正确	检查编码器接线,编码器分辨率与
入错误状态	设置,如使用了霍尔传感器检	方向设置,检查是否有效接地
	查接线是否正确,是否有效接	
	地	

Er 130(无位置传感器模式堵转报警)

原因	检查	处理
工位黑化咸思增于块块	检查是否负载过重,是否受外	重新启动,如依然发生此情况,增
无位置传感器模式堵转	力影响发生堵转	大注入电流比例

Er 150(参数辨识极对数辨识出错)

原因	检查	处理
参数辨识极对数辨识出错	检查电机线和编码器是否接 好,增益参数是否合适	检查接线,调节增益参数

Er 200(增量电机寻相时未发生移动报警)

原因	检查	处理
增量电机寻相时未发生移	检查电机线和编码器线接线,	 检查接线,检查电机轴
动	检查电机轴是否被机械锁死	检查接线,检查电机轴

Er 202(增量电机模式下触发无感运行模式报警)

原因	检查	处理
增量电机模式下触发了无	检查是否错误设置了运行模	检查参数设置
感运行	式参数	位 旦 多 数 以 且

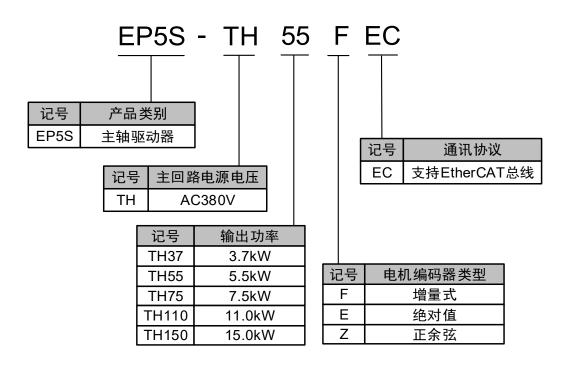
Er 203(ABZ 编码器低分辨率模式测速错误)

原因	检查	处理
ABZ编码器低分辨率模式	检查 FPGA 程序是否配套,	检查 FPGA 程序是否配套,检查是
测速错误	检查是否有效接地	否有效接地

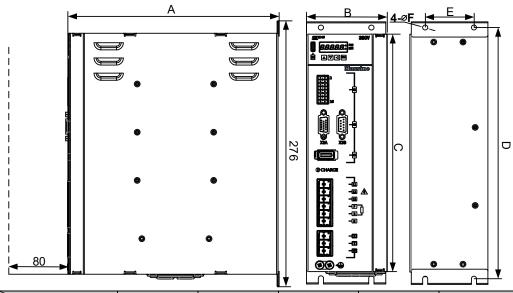
Er 204(ABZ 编码器低分辨率模式下补偿模式错误)

原因	检查	处理
ABZ编码器低分辨率模式	检查编码器相关参数是否正	检查编码器关联轴号等参数是否正
下补偿模式错误	确设置	确设置

Er 998(授权异常)

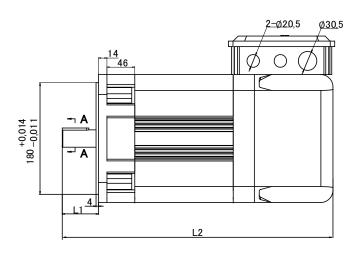

原因	检查	处理
授权异常	授权异常	联系厂家

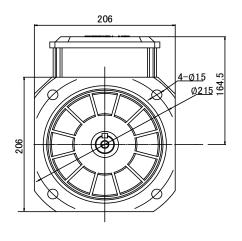
AL 999(本地指令生效警告)

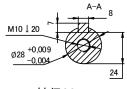

原因	检查	处理
设置无效的操作模式	操作模式的设置	据 6502h 设置有效的操作模式

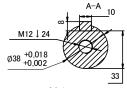
第8章 规格

8.1 驱动器型号

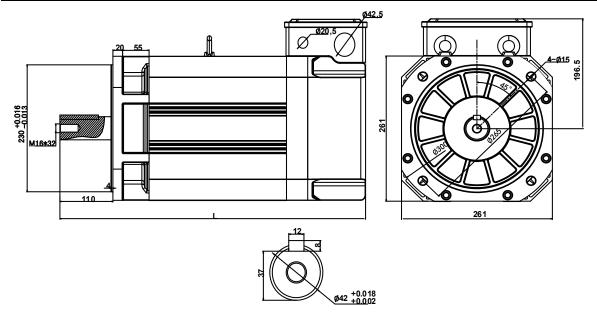

8.2 驱动器尺寸



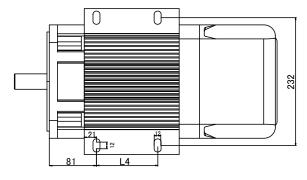

型号 尺寸(mm)	TH37	TH55	TH75	TH110	TH150
A	220	220	220	270	270
В	80	80	80	90	90
С	250	250	250	250	250
D	264	264	264	264	264
Е	50	50	50	50	50
F	6	6	6	6	6

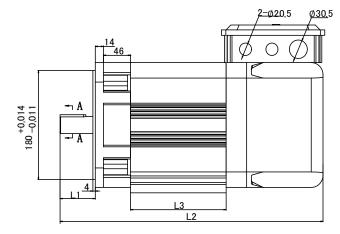

8.3 电机尺寸

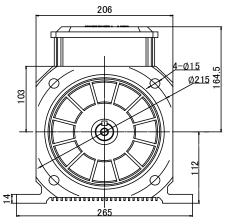
1、DSM-2A 电机

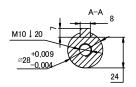


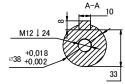
轴径28mm

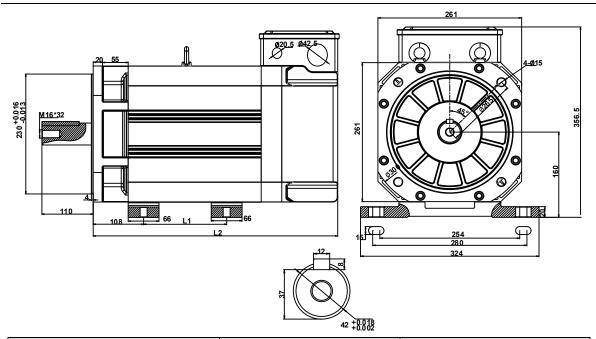

轴径38mm


型号	L1(mm)	L2(mm)	轴径(mm)	备注
DSM-38C3D7K-E2F2A19PS	60	450	38	
DSM-38C5D5K-E2F2A19PM	80	505	38	
DSM-38C7D5K-E2F2A19PL	80	555	38	




型号	L(mm)
DSM-38C011K-E0F2A24PT	584
DSM-38C015K-E0F2A24PS	634


2、DSM-3A 电机



轴径28mm

轴径38mm

型号	L1(mm)	L2(mm)	L3(mm)	L4(mm)	轴径(mm)
DSM-38C3D7K-E2F3A19PS	60	450	163	105	38
DSM-38C5D5K-E2F3A19PM	80	505	198	140	38
DSM-38C7D5K-E2F3A19PL	80	555	248	190	38

型号	L1(mm)	L2(mm)
DSM-38C011K-E0F3A24PT	160	584
DSM-38C015K-E0F3A24PS	178	634

3、DSM 系列电机命名规则

1 符号 系列代码 高性能 DSM 异步主轴电机

(2) 符号 额定电压 38 380V

(3) 符号 额定频率 100Hz Α В 66.7Hz С 50Hz D 33.3Hz Ε 25Hz

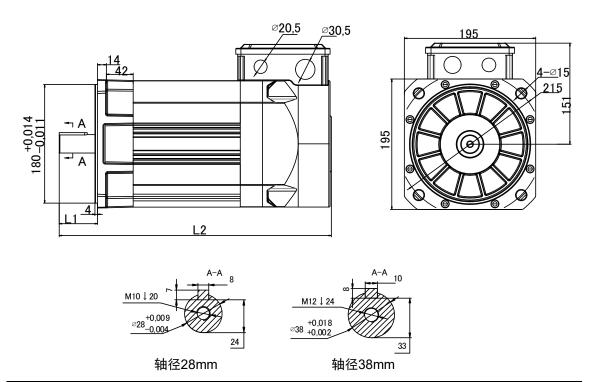
(5) 符号 出轴结构 K 带键 F 光轴

_		
4)	符号	额定功率
•	3D7	3.7KW
	5D5	5.5KW
	7D5	7.5KW
	011	11KW
	015	15KW
		111111

(6) 符号 编码器种类 E0 无编码器 1024编码器 E1 2500编码器 E2

(7) 符号 刹车类型 带刹车 В F 不带刹车

8	符号	安装方式
	1A	张安 定但
	2A	立式安装
	3A	娄安 左 但立

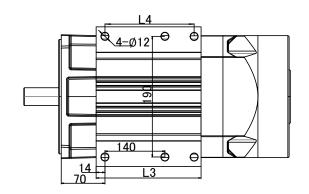

9	符号	电机框号
	19P	19P系列
	24P	24P系列

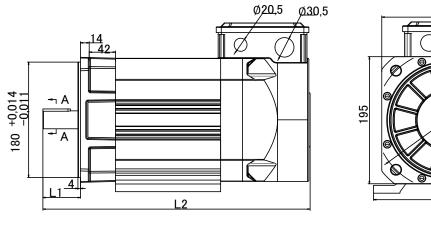
10	符号	电机规格
	S	3.7KW
	М	5.5KW
	L	7.5KW
	Т	11KW
	S	15KW

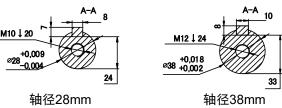
DSM 系列

规格	输出功率 KW		额定 转速	最高 输出 转速 转矩				输出电流	
电机型号	S1-100%	S3-150%	r/min	r/min	S1	S3	S1	S3	
DSM-38C3D7K-E2F3A19PS	3.7KW	5.5KW	1500	8000	24	36	8.1	11.6	
DSM-38C5D5K-E2F3A19PM	5.5KW	7.5KW	1500	8000	36	49	11.6	15.4	
DSM-38C7D5K-E2F3A19PL	7.5KW	11.0KW	1500	8000	49	72	15.4	21	
DSM-38C011K-E2F3A24PT	11KW	15KW	1500	6000	72	98	21	30	
DSM-38C015K-E2F3A24PS	15KW	18.5KW	1500	6000	98	118	30	36	

4、KSM-2A 电机




型号	L1(mm)	L2(mm)	轴径(mm)	备注
KSM-38C3D7K-E2F2A17S	60	427	38	
KSM-38C5D5K-E2F2A17M	80	490	38	
KSM-38C7D5K-E2F2A17L	80	545	38	


4-Ø15 215

195

5、KSM-3A 电机

型号	L1(mm)	L2(mm)	L3(mm)	L4(mm)	轴径(mm)
KSM-38C3D7K-E2F3A17S	60	427	168	/	38
KSM-38C5D5K-E2F3A17M	80	490	211	/	38
KSM-38C7D5K-E2F3A17L	80	545	266	238	38

6、KSM 系列电机命名规则

- ①
 ②
 ③

 ①
 符号
 系列代码
- (5)
 符号
 出轴结构

 K
 带键

光轴

F

 8
 符号
 安装方式

 2A
 立式安装

 3A
 立卧式安装

 (2)
 符号
 额定电压

 38
 380V

KSM 通用异步主轴电机

- (3)
 符号
 额定频率

 A
 100Hz

 B
 66.7Hz

 C
 50Hz

 D
 33.3Hz
- 符号编码器种类E0无编码器E11024编码器E22500编码器

9	符号	电机框号
	17	17系列

_		
(4)	符号	额定功率
	3D7	3.7KW
	5D5	5.5KW
	7D5	7.5KW

 7
 符号
 刹车类型

 B
 带刹车

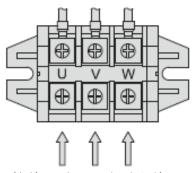
 F
 不带刹车

10	符号	电机规格
	S	3.7KW
	М	5.5KW
	Ĺ	7.5KW

KSM 系列

1101/1 /41/ 4	7417 4								
规格	输出功率 KW		额定 转速	最高 转速	输转	出 矩	,,,,	i出 L流	
电机型号	S1-100%	S3-150%	r/min	r /min	S1	S3	S1	S3	
KSM-38C3D7K-E2F3A17S	3.7KW	5.5KW	1500	6000	24	36	8.1	12	
KSM-38C5D5K-E2F3A17M	5.5KW	7.5KW	1500	6000	36	49	12	16	
KSM-38C7D5K-E2F3A17L	7.5KW	11KW	1500	6000	49	72	16	21.4	

8.4 驱动器规格


	型号	TH37	TH55	TH75	TH110	TH150	
额定输出电流(A)		9.0	13.0	17.0	25.0	32.0	
最	大输出电流(A)	20.0	28.3	34.0	50.0	64.0	
	输入主电源		三相 AC38	80V -15%~+10	% 50/60Hz		
环	温度	工作: 0℃~4	0℃	贮存:	-40°C∼50°C		
「						露)	
况	大气压强	86kPa~106kP	a				
	防护等级	IP20					
	控制方式	矢量控制					
	再生制动	外置					
	反馈方式	增量编码器 /	绝对值编码器	/ 正余弦编码	器		
	控制模式	Cyclic Synchronous Position Mode(CSP), Cyclic Synchronous Velocity					
	江門快八	Mode(CSV)	Cyclic Synchro	nous Torque Mo	ode(CST)		
	数字输入	4个可编程输入	入端子(光电隔)	离),2路高速光	化耦输入		
	数字输出	3个可编程输出	出端子(光电隔)	嵏)			
	特别功能	机械谐振陷波	器、振动抑制,	可选配 STO			
	监视功能	转速、当前位	置、位置偏差、	. 电机转矩、电	山机电流、指令	脉冲频率等	
	保护功能	超速、过压、过流、过载、制动异常、编码器异常、位置超差等					
特	速度频率响应	3kHz					
性	速度波动率	<±0.03% (负	载 0~100%)	; <±0.02% (申	且源-15%∼+10℃	%)	
注	调速比	1:5000					

8.5 电机适配表

电机型号		转 矩 N·m	转 速 r/min	功 率 kW	电机 代码
	DSM-38C3D7K-E2F3A19PS	24	1500	3.7	1
DSM	DSM-38C5D5K-E2F3A19PM	36	1500	5.5	3
	DSM-38C7D5K-E2F3A19PL	49	1500	7.5	5
	KSM-38C3D7K-E2F3A17S	24	1500	3.7	2
KSM	KSM-38C5D5K-E2F3A17M	36	1500	5.5	4
	KSM-38C7D5K-E2F3A17L	49	1500	7.5	6

8.6 主轴电机接线

8.6.1 动力线接线



接线形式 (3头引出线)

8.6.2 编码器接线

	脚位	1	2	3	4	5	6	7	8	9	10
	信号	5V	0V	A+	A-	B+	B-	Z+	Z-	⊕	
	线色	具体线色以编码器为准,实际电机的接线盒内有 作标识									

8.6.3 风扇电源线

版本履历

版本号	发布时间	变更内容
第1版	2025年10月	

武汉迈信电气技术有限公司

公司地址: 武汉市东湖新技术开发区武大科技园武大园路 7 号航域 A6 栋

邮政编号: 430223

公司总机: 400-894-1018

销售热线: 400-894-1018-857/804

销售传真: 027-87921290

售后服务: 400-894-1018-831/832

公司网址: www.maxsine.com

2025 年 10 月编制 严禁转载·复制