Maxsine

EP3 E 系列
MECHATROLINK-III总线
交流伺服驱动器
使用手册

(第9版)

GL1A0/GL1A8/GL3A0/GL5A5/GL7A5/GL120/GL160

驱动器 GL190/GL240/G

GL190/GL240/GH2A0/GH3A5/GH5A4/GH8A5/GH130

GH170/GH210/GH260

武汉迈信电气技术有限公司

声明

武汉迈信电气技术有限公司版权所有。

未经本公司的书面许可,严禁转载或复制本手册的部分或全部内容。

因改进等原因,产品的规格或尺寸如有变更,恕不另行通知。

安全注意事项

在产品存放、安装、配线、运行、检查或维修前,用户必需熟悉并遵守以下重要事项,以确保安全地使用本产品。

⚠ 危险 错误操作可能会引起危险并导致人身伤亡。⚠ 注意 错误操作可能会引起危险,导致人身伤害,并可能使设备损坏。

○禁止 严格禁止行为,否则会导致设备损坏或不能使用。

1. 使用场合

⚠危险

- 禁止将产品暴露在有水气、腐蚀性气体、可燃性气体的场合使用。否则会导致 触电或火灾。
- 禁止将产品用于阳光直射,灰尘、盐分及金属粉末较多的场所。
- 禁止将产品用于有水、油及药品滴落的场所。

2. 配线

⚠危险

- 请将接地端子可靠接地,接地不良可能会造成触电或火灾。
- 请勿将220V驱动器电源接入380V电源,否则会造成设备损坏及触电或火灾。
- 请勿将U、V、W电机输出端子连接到三相电源,否则会造成人员伤亡或火灾。
- 必须将U、V、W电机输出端子和驱动器接线端子U、V、W一一对应连接,否则电机可能超速飞车造成设备损失与人员伤亡。
- 请紧固电源和电机输出端子,否则可能造成火灾。
- 配线请参考线材选择配线,否则可能造成火灾。

3. 操作

⚠注意

- 当机械设备开始运转前,必须配合合适的参数设定值。若未调整到合适的设定值, 可能会导致机械设备失去控制或发生故障。
- 开始运转前,请确认是否可以随时启动紧急开关停机。
- 请先在无负载情况下,测试伺服电机是否正常运行,之后再将负载接上,以避免 不必要的损失。
- 请勿频繁接通、关闭电源,否则会造成驱动器内部过热。

4. 运行

○禁止

- 当电机运转时,禁止接触任何旋转中的零件,否则会造成人员伤亡。
- 设备运行时,禁止触摸驱动器和电机,否则会造成触电或烫伤。
- 设备运行时,禁止移动连接电缆,否则会造成人员受伤或设备损坏。

5. 保养和检查

○禁止

- 禁止接触驱动器及其电机内部,否则会造成触电。
- 电源启动时,禁止拆卸驱动器面板,否则会造成触电。
- 电源关闭5分钟内,不得接触接线端子,否则残余高压可能会造成触电。
- 禁止在电源开启时改变配线,否则会造成触电。
- 禁止拆卸伺服电机,否则会造成触电。

6. 使用范围

⚠ 注意

本手册所涉及产品为一般工业用途,请勿用于可能直接危害人身安全的装置上,如核能装置、航天航空设备、生命保障及维持设备和各种安全设备。如有以上使用需要,请与本公司联系。

目录

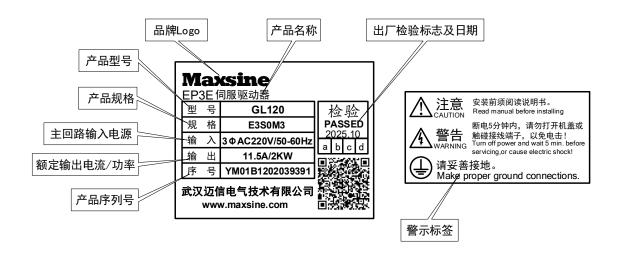
第1章	产品检查及安装	. 1
1.1	产品检查	. 1
1.2	产品铭牌	. 1
1.3	产品前面板	2
1.4	伺服驱动器安装	10
	1.4.1 安装环境条件	10
	1.4.2 安装方法	10
1.5	伺服电机安装	11
	1.5.1 安装环境条件	11
	1.5.2 安装方法	11
1.6	电机旋转方向定义	12
第2章	接线	13
2.1	系统组成与接线	13
	2.1.1 伺服驱动器接线图	13
	2.1.2 接线说明	16
	2.1.3 电线规格	
	2.1.4 强电端子说明	
	2.1.5 主回路接线图	
	制动电阻的适配	
	电抗器的连接	
2.4	X1 控制信号端子	
	2.4.1 X1 端子插头	
	2.4.2 X1 端子信号说明	
	2.4.3 X1 端子接口类型	
2.5	X2、X3 编码器信号端子	
	2.5.1 X2 端子插头	
	2.5.2 X2 端子信号说明	
	2.5.3 X3 端子	
2.6	X5、X6 Mechatrolink-Ⅲ网□	
	2.6.1 X5、X6 端子插座	
2.5	2.6.2 X5、X6 端子信号说明	
	标准接线图	
	面板操作	
3.1	驱动器面板说明	
	3.1.1 面板组成	
	3.1.2 面板说明	30

	3.1.3 数值显示	31
3.2	2 主菜单	31
3.3	3 状态监视	32
3.4	4 参数设置	36
3.5	5 参数管理	37
3.6	5 辅助功能	38
	3.6.1 特殊功能☆	38
3.7	7 参数缺省值恢复	39
	· 运行	
4.	l 空载试运行	40
	4.1.1 接线和检查	40
	4.1.2 键盘调速试运行	40
4.2	2 位置控制	41
	4.2.1 位置控制的参数设置	41
	4.2.2 输入电子齿轮	41
	4.2.3 位置控制有关增益	46
4.3	3 增益调整	47
	4.3.1 增益参数	47
	4.3.2 增益调整步骤	49
4.4	4 共振抑制	50
	4.4.1 低通滤波器	51
	4.4.2 陷波器	51
4.5	5 绝对值编码器的设定	
	4.5.1 绝对值编码器多圈信息的保存	52
	4.5.2 绝对值编码器的初始化☆	52
4.6	5 超程保护	53
4.7	7 转矩限制	54
	4.7.1 转矩限制参数	54
	4.7.2 转矩限制模式	
4.8	3 工作时序	
	4.8.1 电源接通时序	
	4.8.2 伺服 ON 时报警时序	
	4.8.3 电机静止时的伺服 ON/OFF 动作时序	
	4.8.4 电机运转时的伺服 ON/OFF 动作时序	
4.9	9 电磁制动器	
	4.9.1 电磁制动器使用	
	:参数	
5.1	I 参数详解	
	5.1.1 0 段参数	
	5.1.2 1 段参数	64

	5.1.3 2 段参数	69
	5.1.4 3 段参数	82
5.2	DI 功能一览表	84
5.3	DO 功能一览表	84
5.4	DI 功能详解	85
5.5	DO 功能详解	87
第6章	通讯功能	88
6.1	Mechatrolink-III参数	88
6.2	Mechatrolink-III通信	88
	6.2.1 Mechatrolink-III网络连接	88
	6.2.2 Mechatrolink-Ⅲ帧结构	90
	6.2.3 Mechatrolink-Ⅲ通讯命令列表	91
	6.2.4 Mechatrolink-Ⅲ命令的执行	92
	6.2.5 Mechatrolink-Ⅲ命令特定字段详解	92
	位置信息	
6.4	Mechatrolink-III运行模式	101
	6.4.1 位置模式	101
	6.4.2 速度模式	102
	6.4.3 转矩模式	102
	6.4.4 闩锁	102
第7章	报警	103
7.1	报警原因和处理	103
第8章	规格	110
8.1	驱动器型号	110
8.2	驱动器尺寸	.111
8.3	驱动器规格	113
8.4	驱动器的电机适配表	114
8.5	伺服电机型号	116
8.6	伺服电机接线	117
	8.6.1 绕组接线	117
	8.6.2 制动器	117
	8.6.3 编码器	118
附录A	新代系统串列参数读写	119
A.1	速度回路增益 Pn100	119
A.2	速度回路积分时间常数 Pn101	119
A.3	位置回路增益 Pn102	120
	转动惯量比 Pn103	
	第1段 Notch filter 频率 Pn409	
A.6	第 2 段 Notch filter 频率 Pn40C	122
A.7	刹车指令-伺服 OFF 延迟时间 Pn506	122

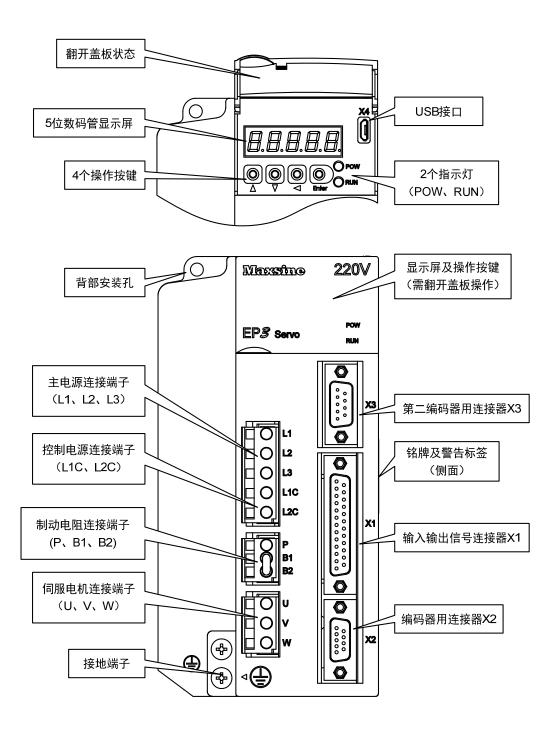
备注

-	

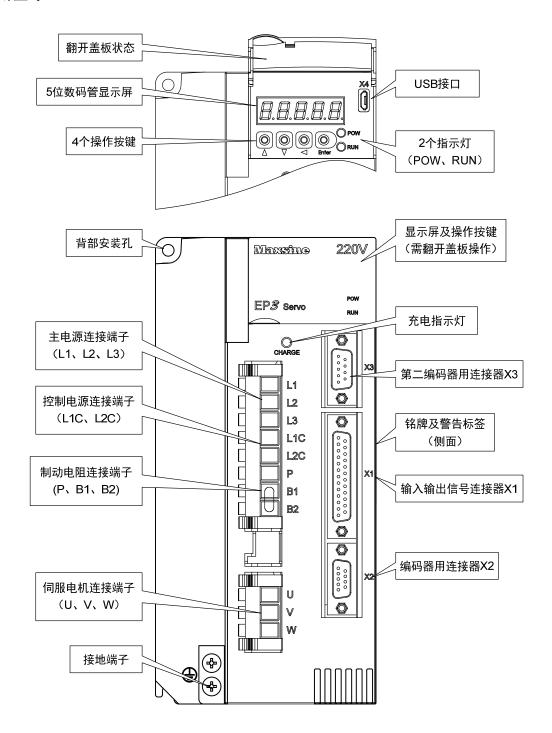

第1章 产品检查及安装

1.1 产品检查

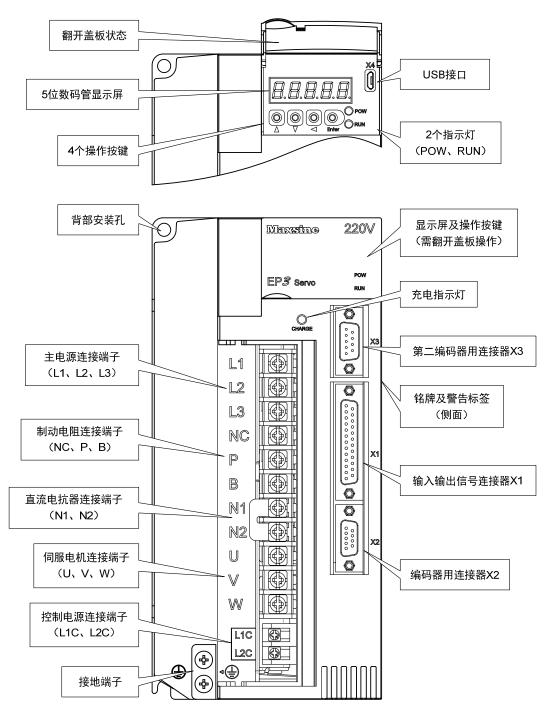
本产品在出厂前均做过完整功能测试,为防止产品运送过程中因疏忽导致产品不 正常,拆封后请详细检查下列事项:

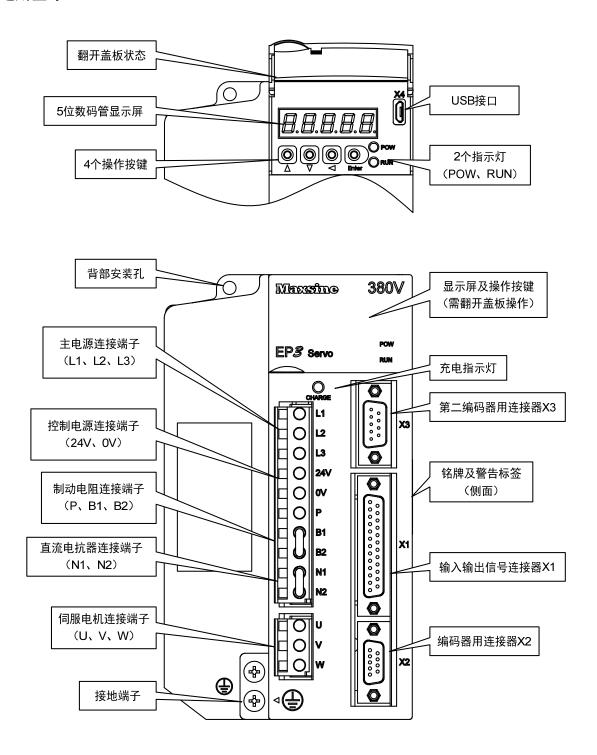

- 检查伺服驱动器与伺服电机型号是否与订购的机型相同。
- 检查伺服驱动器与伺服电机外观有无损坏及刮伤现象。运送中造成损伤时,请勿 接线送电。
- 检查伺服驱动器与伺服电机有无零组件松脱之现象。是否有松脱的螺丝,是否螺 丝未锁紧或脱落。
- 检查伺服电机转子轴是否能以手平顺旋转。带制动器的电机无法直接旋转。 如果上述各项有发生故障或不正常的现象,请立即与经销商联系。

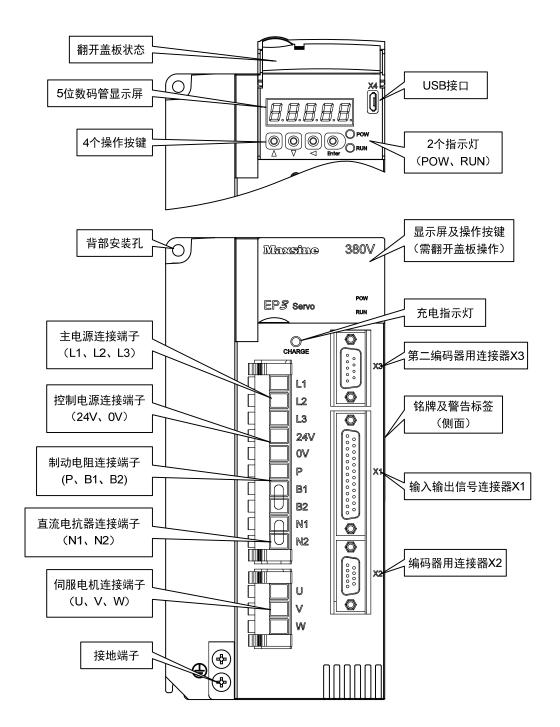
1.2 产品铭牌



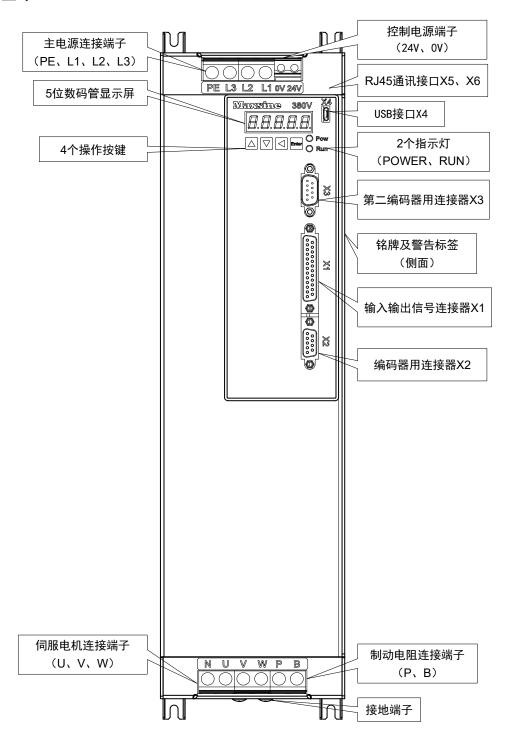
1.3 产品前面板


适用型号: GL1A0、GL1A8、GL3A0、GL5A5、GL7A5、GL120


适用型号: GL160


适用型号: GL190、GL240

适用型号: GH2A0、GH3A5、GH5A4



适用型号: GH8A5

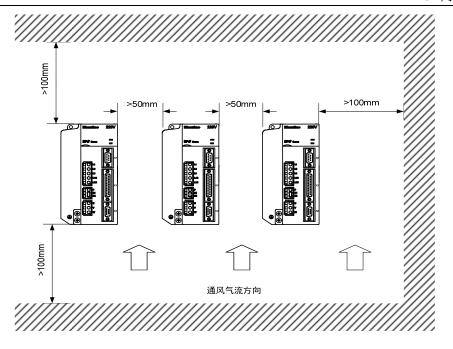
适用型号: GH130、GH170、GH210 翻开盖板状态 X4E USB接口 *8.8.8.8.* 5位数码管显示屏 2个指示灯 4个操作按键 (POW、RUN) 背部安装孔 显示屏及操作按键 380V Maxxine (需翻开盖板操作) POW EP3 Servo RUN 充电指示灯 CHARGE •••• 主电源连接端子 第二编码器用连接器X3 (L1、L2、L3) L1 0 L2 0 L3 铭牌及警告标签 制动电阻连接端子 (侧面) NC (NC, P, B) X1 P B 输入输出信号连接器X1 0 直流电抗器连接端子 N10 (N1、N2) N2U 编码器用连接器X2 0 伺服电机连接端子 (U, V, W) \mathbb{W} 控制电源连接端子 24V (24V, 0V) 0V 4 **(4**) 接地端子

适用型号: GH260

适用型号: GH320、GH390 主电源连接端子 控制电源端子 (PE, L1, L2, L3) (24V, OV) RJ45通讯接口X5、X6 Waxxine 380V USB接口X4 5位数码管显示屏 2个指示灯 (POWER, RUN) 4个操作按键 ×3 第二编码器用连接器X3 X1 / X2 / 铭牌及警告标签 (侧面) 输入输出信号连接器X1 编码器用连接器X2 制动电阻连接端子 伺服电机连接端子 N U V W P B (P, B) (U, V, W)

接地端子

1.4 伺服驱动器安装


1.4.1 安装环境条件

伺服驱动器安装的环境对驱动器正常功能的发挥及其使用寿命有直接的影响,因 此驱动器的安装环境必须符合下列条件:

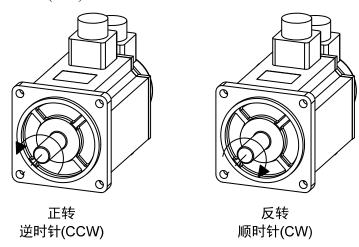
- 工作环境温度: 0~40℃; 工作环境湿度: 40%~80%以下(无结露)。
- 贮存环境温度: -40~50℃; 贮存环境湿度: 93%以下(无结露)。
- 振动: 0.5G以下。
- 防止雨水滴淋或潮湿环境。
- 避免直接日晒。
- 防止油雾、盐分侵蚀。
- 防止腐蚀性液体、瓦斯侵蚀。
- 防止粉尘、棉絮及金属细屑侵入。
- 远离放射性物质及可燃物。
- 数台驱动器安装于控制柜中时,请注意摆放位置需保留足够的空间,以利于空气流动帮助散热。请外加配置散热风扇,使伺服驱动器周围温度降低。长期安全工作温度在40℃以下。
- 附近有振动源时(例如冲床),若无法避免请使用振动吸收器或加装防振橡胶垫片。
- 附近有干扰设备时,对伺服驱动器的电源线和控制线有干扰,可能使驱动器产生 误动作。可以加入噪声滤波器以及其它各种抗干扰措施,保证驱动器的正常工作。 但噪声滤波器会增加漏电流,因此需在驱动器的电源输入端装上隔离变压器。

1.4.2 安装方法

- 伺服驱动器的正常安装方向是垂直直立方向,顶部朝上以利散热。
- 安装时,上紧伺服驱动器后部的 M5 固定螺丝。
- 伺服驱动器之间以及与其它设备间的安装间隔距离参考图中所示,为了保证驱动器的使用性能和寿命,请尽可能地留有充分的安装间隔。
- 电气控制柜内必须安装散热风扇,保证有垂直方向的风对伺服驱动器的散热器散 热。
- 安装电气控制柜时,防止粉尘或铁屑进入伺服驱动器内部。

1.5 伺服电机安装

1.5.1 安装环境条件

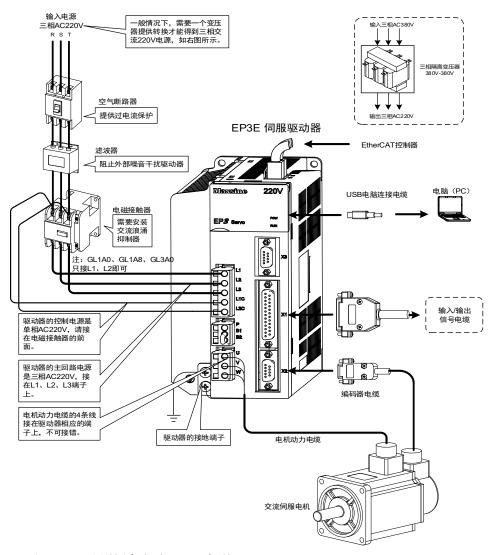

- 工作环境温度: 0~40℃; 工作环境湿度: 80%以下(无结露)。
- 贮存环境温度: -40~50℃; 贮存环境湿度: 80%以下(无结露)。
- 振动: 0.5G以下。
- 通风良好、少湿气及灰尘的场所。
- 无腐蚀性、引火性气体、油气、切削液、切削粉、铁粉等环境。
- 无水汽及阳光直射的场所。

1.5.2 安装方法

- 水平安装:为避免水、油等液体自电机出线端流入电机内部,请将电缆出口置于下方。
- 垂直安装: 若电机轴朝上安装且附有减速机时,须注意并防止减速机内的油渍经由电机轴渗入电机内部。
- 电机轴的伸出量需充分,若伸出量不足时将容易使电机运动时产生振动。
- 安装及拆卸电机时,请勿用榔头敲击电机,否则容易造成电机轴及编码器损坏。

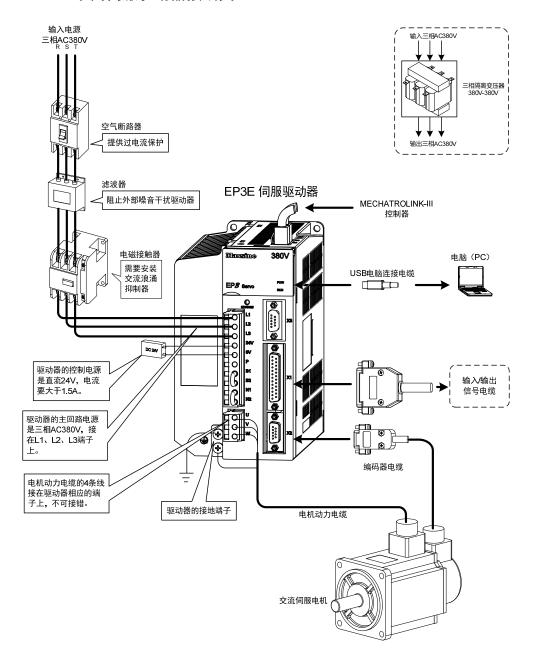
1.6 电机旋转方向定义

本手册描述的电机旋转方向定义:面对电机轴伸,转动轴逆时针旋转(CCW)为正转,转动轴顺时针旋转(CW)为反转。


第2章 接线

2.1 系统组成与接线

2.1.1 伺服驱动器接线图


1. EP3E-GL 系列伺服驱动器接线图

适用型号: GL1A0、GL1A8、GL3A0、GL5A5、GL7A5、GL120、GL160

注: GL190和GL240具体请参考2.1.5章节。

2. EP3E-GH 系列伺服驱动器接线图

注: 此接线方式仅适用 GH2A0、GH3A5 和 GH5A4,而 GH8A5、GH130、GH170、GH210 具体请参考 2.1.5 章节。

适用型号: GH260、GH320、GH390

2.1.2 接线说明

接线注意事项:

- 接线材料依照电线规格使用。
- 电缆长度,指令电缆3m以内,编码器电缆20m以内。
 - GL 系列: 检查 L1、L2、L3 和 L1C、L2C 的电源和接线是否正确,请勿接到 380V 电源上。
 - GH 系列: 检查 L1、L2、L3 和 0V、24V 的电源和接线是否正确。
- 电机输出 U、V、W 端子相序,必须和驱动器相应端子一一对应,接错电机可能不 转或飞车。不能用调换三相端子的方法来使电机反转,这一点与异步电动机完全不 同。
- 必须可靠接地,而且单点接地。
- 装在输出信号的继电器,其吸收用的二极管的方向要连接正确,否则会造成故障无法输出信号。
- 为了防止噪声造成的错误动作,请在电源上加入绝缘变压器及噪声滤波器等装置。
- 请将动力线(电源线、电机线等的强电回路)与信号线相距30cm以上来配线,不要放置在同一配线管内。
- 请安装非熔断型断路器使驱动器故障时能及时切断外部电源。

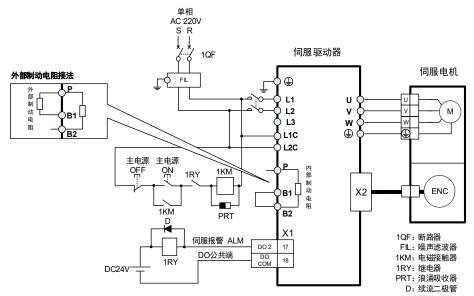
2.1.3 电线规格

连接端子		符号	电线规格	
主电路电源		L1, L2, L3	$0.75 \sim 10 \text{mm}^2$	
控制电源	GL 系列	L1C、L2C	$0.75 \sim 1.0 \text{mm}^2$	
江州电源	GH 系列	24V、0V	$0.75 \sim 1.0 \text{mm}^2$	
电机连接端子		U、V、W	$0.75 \sim 10 \text{mm}^2$	
接地端子		(1)	$0.75 \sim 4 \text{mm}^2$	
控制信号端子		X1	≥0.14mm² (AWG26),含屏蔽线	
编码器信号端子		X2	≥0.14mm² (AWG26),含屏蔽线	
制动电阻端子		P, B1/P, B	1.5~4mm ²	

编码器电缆必须使用带屏蔽线的双绞线。如果编码器电缆太长(>20m),会导致编码器供电不足,其电源和地线可采用多线连接或使用粗电线。

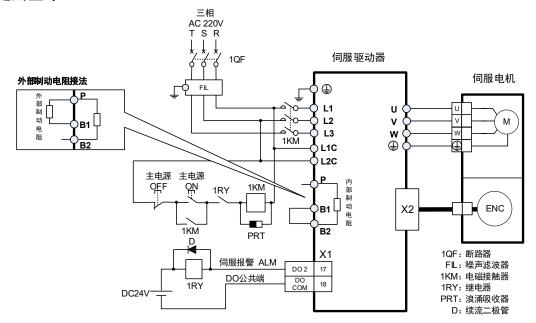
2.1.4 强电端子说明

名称	端子符号	型号	详细说明
22 da 114	L1 L2	GL1A0、GL1A8、GL3A0	单相 220VAC -15%~+10% 50/60Hz
主电路 电源输 入端子	L1 L2	GL5A5、GL7A5、GL120、 GL160、GL190、GL240	三相 220VAC -15%~+10% 50/60Hz
	L3	GH 系列	三相 380VAC -15%~+10% 50/60Hz
控制电路 电源端子	L1C L2C	GL 系列	单相 220VAC -15%~+10% 50/60Hz
电源编丁	24V、0V	GH 系列	外接 DC 24V
	P B1 B2	GL1A0【注1】、GL1A8、 GL3A0、GL5A5、GL7A5、 GL120、GL160、GH2A0、 GH3A5、GH5A4	需使用外部制动电阻时,将 B1、B2【注 2】之间 短接线断开,外部制动电 阻跨接在 P、B1 端,使 B2 悬空。
制动电阻端子	NC P B	GL190、GL240【注 1】、 GH8A5、GH130、GH170、 GH210、GH260、GH320、 GH390	使用外部制动电阻时,必 须先拆开 P、B 间的内接 制动电阻线,同时将两根 内接制动电阻线接在 NC 上,然后再将外部制动电 阻跨接在 P、B 上。
电源高次 谐波抑制用 DC 电抗器 连接端子	N1 N2	GL190、GL240、GH 系列	需要对电源高次谐波进行抑制时,在N1、N2【注2】之间连接DC电抗器
电机连 接端子	U V W	EP3E 全系列	输出到电机 U 相电源 输出到电机 V 相电源 输出到电机 W 相电源
接地端子	(1)	EP3E 全系列	电机外壳接地端子 驱动器接地端子

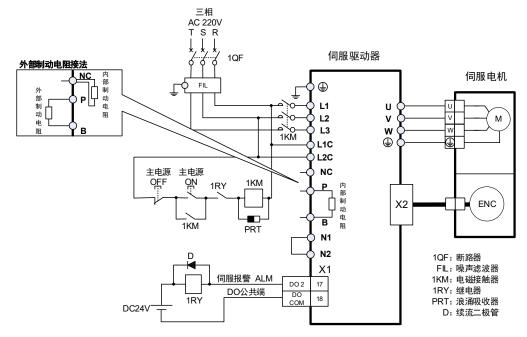

注1. GL1A0、GL240、GH260、GH320、GH390均无内部制动电阻,GL1A0一般不需要连接制动电阻,但GL240需连接外部制动电阻时,要将外部制动电阻跨接在P、B端,NC悬空。

注2. 出厂时为默认内部制动电阻接法: B1 和 B2 间呈短接状态、N1 和 N2 间呈短接状态。

2.1.5 主回路接线图

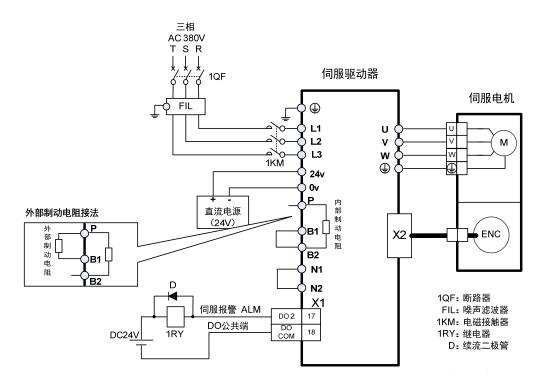

1.GL 系列伺服驱动器电源采用三相交流 220V 的,一般是从三相交流 380V 通过变压器获得。

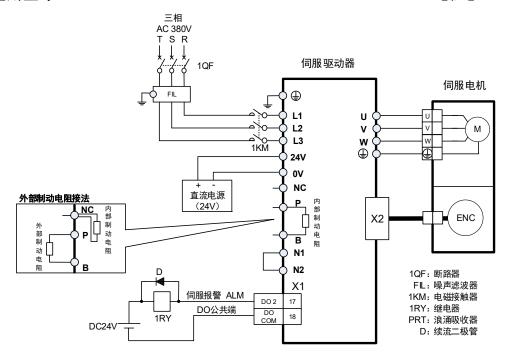
适用型号: GL1A0、GL1A8、GL3A0



注: GL1A0 无内部制动电阻,一般不需要连接制动电阻。

适用型号: GL5A5、GL7A5、GL120、GL160


适用型号: GL190、GL240


注: GL240 无内部制动电阻, 需连接外部制动电阻使用。

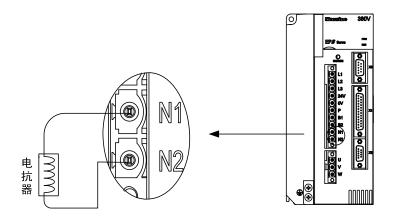
2.GH 系列:

适用型号: GH2A0、GH3A5、GH5A4、GH8A5

适用型号: GH130、GH170、GH210、GH260、GH320、GH390【注】

- 注1: GH130 为内置制动电阻,可满足一般场合。
- 注 2: GH170、GH210、GH260、GH320、GH390 无内部制动电阻, 需连接外部制动电阻使用。
- 注 3: GH260、GH320、GH390 无 N1、N2, 仅有 N 端子, 不作短接处理。

2.2 制动电阻的适配


驱动器系列		内部制动 电阻规格	外部制动 电阻推荐规格	外部制动 电阻最小阻值
	GL1A0	无	$47\Omega/100W$	30 Ω
	GL1A8	47 Ω /100W	36Ω/200W	30 Ω
	GL3A0	47 Ω /100W	36Ω/200W	30 Ω
	GL5A5	47 Ω /100W	$36\Omega/200W$	25 Ω
AC220V	GL7A5	47 Ω /100W	$36\Omega/200W$	25 Ω
	GL120	$47\Omega/100W$	25Ω/200W	20 Ω
	GL160	$47\Omega/100W$	25Ω/200W	20 Ω
	GL190	$47\Omega/100W$	20Ω/500W	12 Ω
	GL240	无	20Ω/500W	12 Ω
	GH2A0	$110\Omega/100W$	50Ω/500W	45 Ω
	GH3A5	$110\Omega/100\mathrm{W}$	50Ω/500W	45 Ω
	GH5A4	$110\Omega/100W$	50Ω/500W	45 Ω
	GH8A5	47 Ω /100W	50Ω/500W	40Ω
AC380V	GH130	47 Ω /100W	36Ω/750W	30 Ω
AC360 V	GH170	无	36Ω/750W	30 Ω
	GH210	无	20Ω/1000W	15 Ω
	GH260	无	20Ω/1000W	15 Ω
	GH320	无	20Ω/1000W	15 Ω
	GH390	无	$20\Omega/1000W$	12 Ω

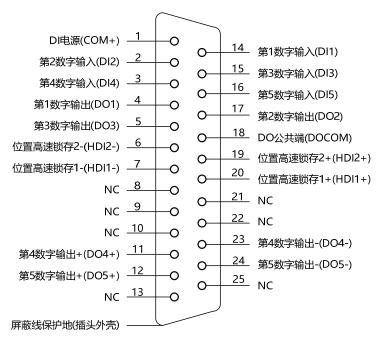
注1.表中所推荐的电阻,可以满足大部分场合的应用。在实际应用中,不能满足需求时,请与厂家联系。

注2.所有的驱动器更改为外接制动电阻时,参数 P084/P085/P086 要做相应的修改,具体修改参考 5.1.1 章节中的对应参数说明。

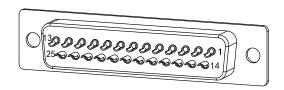
2.3 电抗器的连接

需要对电源高次谐波进行抑制时,在N1、N2之间连接直流电抗器。

注: 仅 GL190、GL240、GH2A0、GH3A5、GH5A4、GH8A5、GH130、GH170、GH210 型伺服驱动器有外接电抗器连接功能。


2.4 X1 控制信号端子

X1 控制信号端子提供与外部 IO 连接所需要的信号,使用 DB25 插座,信号包括:


- 5个可编程输入;
- 5个可编程输出;
- 2路高速色标锁存输入。

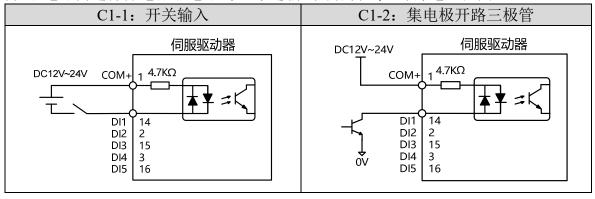
2.4.1 X1 端子插头

X1 端子插头采用 DB25 公头,外形和针脚分布为:

驱动器X1插头

X1插头焊针分布

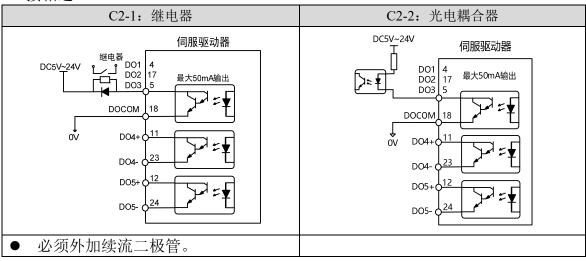
2.4.2 X1 端子信号说明

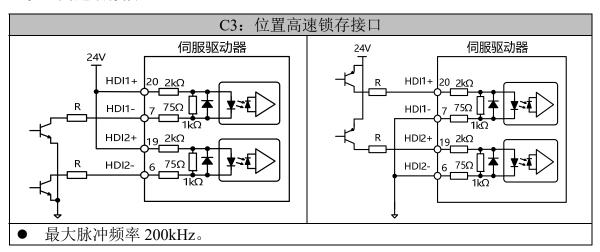

信号名称		针脚号	功能	接口
	DI1	14		
	DI2	2	光电隔离输入,功能可编程,	
数字输入	DI3	15	由参数 P100~P104 定义。	C1
数寸 棚八 	DI4	3	田参数下100~下104 足义。	CI
	DI5	16		
	COM+	1	DI 电源(DC12V~24V)	
	DO1	4	光电隔离输出,最大输出能	
	DO2	17	力 50mA/25V, 功能可编程,	C2
	DO3	5	由参数 P130~P132 定义。	C2
数字输出	DOCOM	18	DO 公共端	
	DO4+/DO4-	11/23	光电隔离输出,最大输出能	
		12/24	力 50mA/25V, 功能可编程,	
	DO5+/DO5-	12/24	由参数定义数字差分输出	
	HDI1+/HDI1-	20/7		
位置高速锁存	HDI2+/HDI2-	19/6	高速光电隔离输入	
屏蔽线保护地	插头金属外壳			
州似约木17 地	四大亚两川九		建 按	

2.4.3 X1 端子接口类型

以下将介绍X1各接口电路,及与上位控制装置的接线方式。

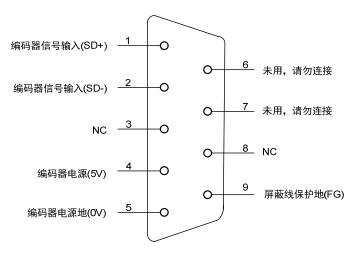
1. 数字输入接口(C1)

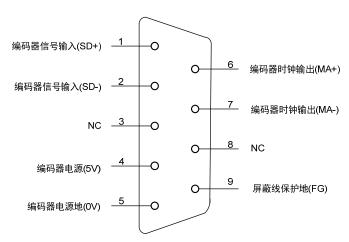

数字输入接口电路可由开关、继电器、集电极开路三极管、光电耦合器等进行控制。继电器需选择低电流继电器,以避免接触不良的现象。外部电压范围DC12V~24V。


2. 数字输出接口(C2)

输出电路采用达林顿光电耦合器,可与继电器、光电耦合器连接,注意事项:

- 电源由用户提供,如果电源接反,会导致驱动器损坏。
- 外部电源最大 25V, 输出最大电流 50mA, 3 路电流总和不超过 100mA。
- 当使用继电器等电感性负载时,需加入二极管与电感性负载并联,若二极管的极性相反时,将导致驱动器损坏。
- 导通时,约有 1V 左右压降,不能满足 TTL 低电平要求,因此不能和 TTL 电路直接相连。


3. 位置高速锁存接口(C3)


2.5 X2、X3 编码器信号端子

2.5.1 X2 端子插头


下图为X2编码器信号端子与电机编码器连接图,使用双排DB9插座,外形和针脚分布为:

驱动器X2插头(绝对值串行通信编码器)

驱动器X2插头(绝对值BISSC通信编码器)

X2插头焊针分布

2.5.2 X2 端子信号说明

绝对值串行通信编码器定义:

信号名称		针脚号 6芯	功能
编码器电源	5V	4	编码器用 5V 电源(由驱动器提供),电缆在 20m以上时,为了防止编码器电压降低,电源和地
無 写	0V	5	线可采用多线连接或使用粗电线。
台 旦 於)	SD+	1	与绝对式编码器信号输出连接。
信号输入	SD-	2	当绝对八辆阿奋信与制工压按。
屏蔽线保护地 FG 9 !		9	与信号电缆屏蔽线连接。

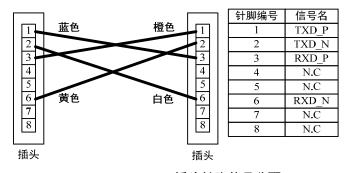
绝对值BISSC通信编码器定义:

信号名称		针脚号 绝对式(6芯)	功能
编码器电源	5V	4	编码器用 5V 电源(由驱动器提供),电缆在 20m 以上时,为了防止编码器电压降低,电
	0V	5	源和地线可采用多线连接或使用粗电线。
信号输入	SD+	1	
百分制八	SD-	2	可绝外入编码备信与制山建按。
时钟输出	MA+	6	与绝对式编码器时钟输入连接。
印扩机山	MA-	7	可绝对八编阿备的钟制八足按。
屏蔽线 保护地	FG	9	与信号电缆屏蔽线连接。

2.5.3 X3 端子

预留

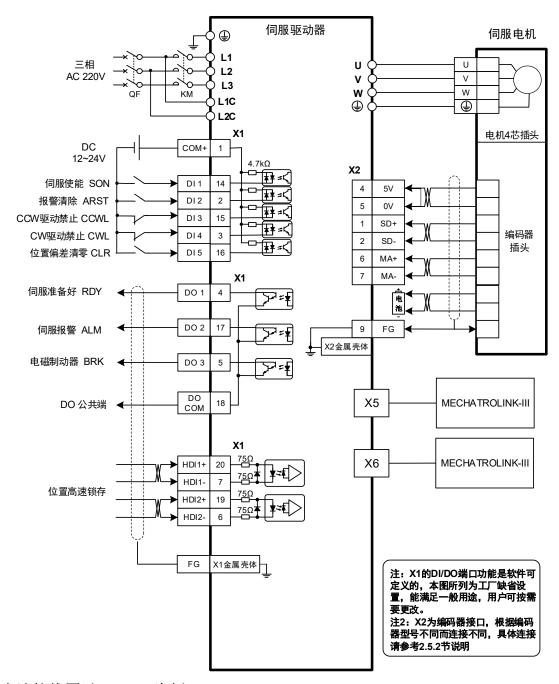
2.6 X5、X6 Mechatrolink-Ⅲ网口


X5、X6为 Mechatrolink-III输入输出口,两者没有区别,可以随意连接。

2.6.1 X5、X6 端子插座

2.6.2 X5、X6 端子信号说明

MECHATROL I NK-III网络中使用的电缆类型均为交叉型电缆。电缆的连接如下所示(I MI 插头和RJ-45插头相同)。

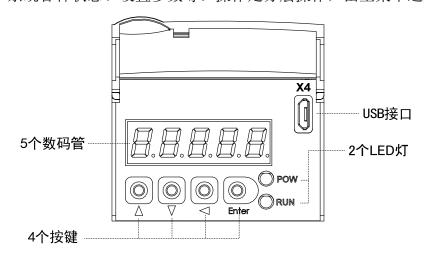


MECHATROLINK-III插头针脚信号分配

注:电缆的芯线颜色如图所示时,蓝色和白色为一对,橙色和黄色为一对。 自己加工电缆时注意不要弄混配对。

处于网络末端的模块,未连接电缆的端口可以空置(无需连接终端电阻)。

2.7 标准接线图

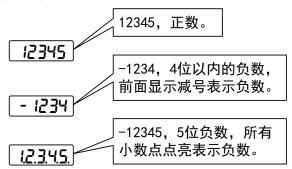

注: 上述接线图以 GL7A5 为例。

第3章 面板操作

3.1 驱动器面板说明

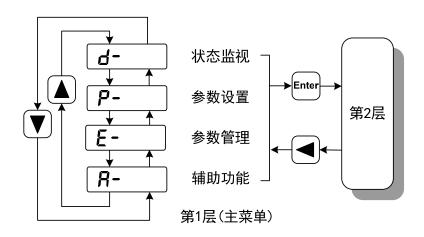
3.1.1 面板组成

面板由 5 个 LED 数码管显示器和 4 个按键 ▲、▼、■ 和 1 个 USB 接口组成, 用来显示系统各种状态、设置参数等。操作是分层操作,由主菜单逐层展开。

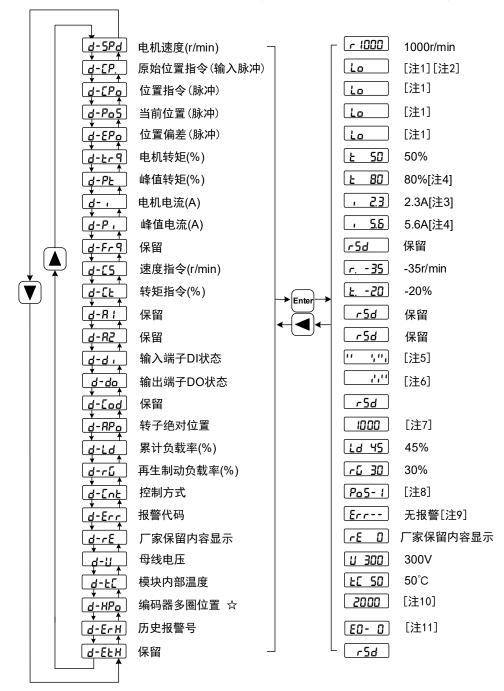


3.1.2 面板说明

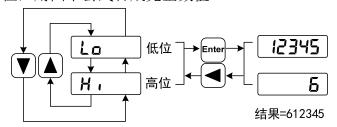
符号	名称	功能
POW	主电源灯	点亮: 主电源已上电;
row	土电你凡	熄灭: 主电源未上电。
RUN	运行灯	点亮: 电机通电运行中;
KUN	色门刀	熄灭: 电机未通电运行。
	增加键	增加序号或数值;长按具有重复效果。
V	减小键	减小序号或数值;长按具有重复效果。
•	退出键	菜单退出;操作取消。
Enter	确认键	菜单进入;操作确认。
	USB 接口	设备与计算机连接的接口。


3.1.3 数值显示

数值采用 5 个数码管显示器,数值前面显示减号表示负数,如果是 5 位负数,则 所有小数点点亮表示负数。有些显示项目前有前缀字符,如果数值位数太长需占用前 缀字符的位置,则前缀字符不会显示,只显示数值。


3.2 主菜单

第1层是主菜单,共有4种操作方式,用 ▲、▼ 键改变方式,按 ¹²² 键进入第2层,执行具体操作,按 ¹²³ 键从第2层退回主菜单。


3.3 状态监视

在主菜单下选择状态监视 "d-",按 ^{□□} 键进入监视方式。有多种监视项目,用户用 ▲、▼ 键选择需要的显示项目,再按 ^{□□} 键,进入具体的显示状态。

1.32 位二进制数值显示[注 1]

32 位二进制数范围是-2147483648~2147483647,采用低位和高位组合表示,通过菜单选择低位和高位,用图中公式合成完整数值。

32位数值=高位数值×100000+低位数值

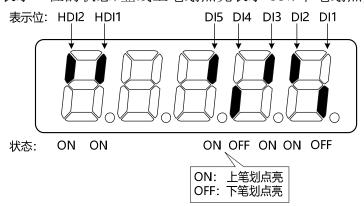
2. 位置单位[注 2]

原始位置指令的脉冲是指输入的脉冲个数,未经过电子齿轮变换。

其他的项目的脉冲(位置指令,当前位置,位置偏差,转子绝对位置)是统一脉冲单位。

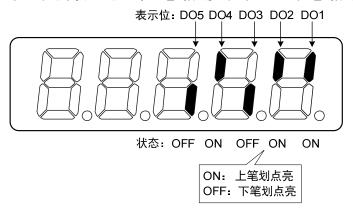
统一脉冲单位=65536(pulse/rev)

3. 峰值转矩和峰值电流[注 3]


过去 10 秒内电机的最大转矩和最大相电流有效值。

4. 电机电流[注 4]

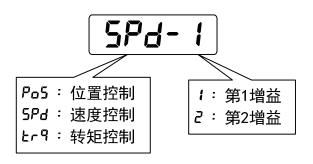
电机相电流有效值。


5. 输入端子 DI[注 5]

数码管的竖线表示一位的状态,竖线上笔划点亮表示 ON,下笔划点亮表示 OFF。

6.输出端子 DO[注 6]

数码管的竖线表示一位的状态,竖线上笔划点亮表示 ON,下笔划点亮表示 OFF。



7. 转子绝对位置[注 7]

表示转子在一转中相对定子所处的位置,以一转为一个周期,厂家脉冲单位,以编码器 Z 脉冲为原点。其范围是 $0\sim65535$,Z 脉冲出现时数值为 0。

8. 控制方式[注 8]

前3个字符表示控制方式,最后字符表示增益组合。

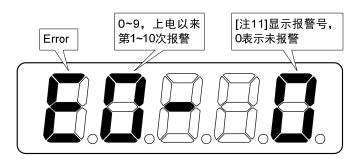
9. 报警代码[注 9]

无报警显示两减号。有报警显示报警号,并闪烁。报警出现时,显示器会自动进入状态监视并显示报警号,但可以通过键盘进行其他操作,当其不处于监视状态时,则最右边数码管的小数点闪烁表示有报警存在。

10. 编码器多圈位置[注 10]

此状态显示仅绝对值式驱动器有效。记录编码器的多圈位置,其范围是 $0\sim65535$,配合 RPo 转子单圈绝对位置,可以得出转子的绝对位置:

绝对位置=多圈位置×绝对值式编码器位数+单圈位置

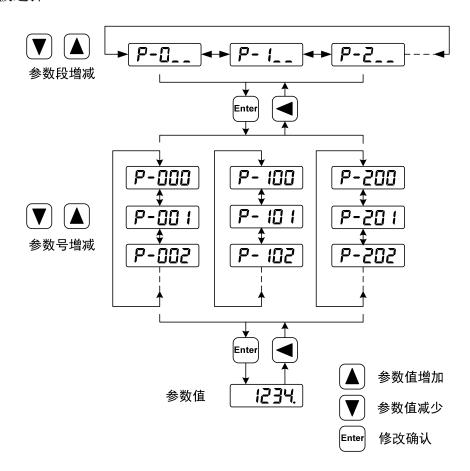

例如:多圈位置显示 2000,单圈位置显示 1000,均为 10 进制数

则编码器的绝对位置为 $(2000 \times 2^{16} + 1000)(10$ 进制)=131073000

当绝对值编码器设置为单圈模式时(P090=0),多圈位置显示为 0,并不随转子的位置变化。

11. 历史报警号[注 11]

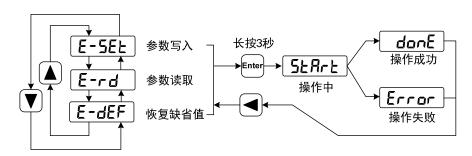
显示报警号,可用▲、▼键查看历史报警号。


3.4 参数设置

参数采用参数段+参数号表示,百位数是段号,十位和个位是参数号。例如参数 P102, 段号是"1",参数号是"02",显示器显示为"*P- 102*"。

在主菜单下选择参数设置"**P**-",按 ^{□□} 键进入参数设置方式。首先用 ▲、▼ 键选择参数段,选中后,按 ^{□□} 键,进入该段参数号选择。其次再用 ▲、▼ 键选择参数号,选中后,按 ^{□□} 键显示参数值。

用 ▲、▼ 键修改参数值。按 ▲ 或 ▼ 键一次,参数增加或减少 1,按下并保持 ▲ 或 ▼ 键,参数能连续增加或减少。参数值被修改时,最右边的 LED 数码管小数点点亮,按 懂 键确定修改数值有效,此时右边的 LED 数码管小数点熄灭,修改后的数值将立刻反映到控制中(部分参数需要保存后重新上电才能起作用)。此后还可以继续修改参数,修改完毕按 ● 键退回到参数号选择状态。如果对正在修改的数值不满意,不要按 懂 键确定,可按 ● 键取消,参数恢复原值。


修改后的参数并未保存到 EEPROM 中,若需要永久保存,请使用参数管理中的参数写入操作。参数段、参数号不一定是连续的,未使用的参数段、参数号将被跳过而不能被选择。

3.5 参数管理

参数管理主要处理参数表与 EEPROM 之间操作,在主菜单下选择参数管理 "E-",按 键进入参数管理方式。

选择操作模式,共有3种模式,用 ▲、▼ 键来选择。选中操作后按下 彎 键并保持3秒以上,激活操作。完毕后再可按 ■ 键退回到操作模式选择状态。

● 参数写入

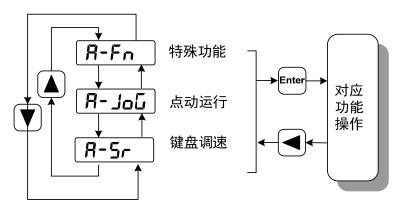
表示将参数表中的参数写入 EEPROM。用户修改了参数,仅使参数表中参数值改变了,下次上电又会恢复成原来的数值。如果想永久改变参数值,就需要执行参数写入操作,将参数表中参数写入到 EEPROM 中,以后上电就会使用修改后的参数。

● 参数读取

表示将 EEPROM 中的数据读到参数表中。这个过程在上电时会自动执行一次,开始时,参数表的参数值与 EEPROM 中是一样的。但用户修改了参数,就会改变参数表中参数值,当用户对修改后的参数不满意或参数被调乱时,执行参数读取操作,可将 EEPROM 中数据再次读到参数表中,恢复成刚上电的参数。

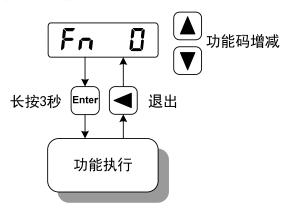
● 恢复缺省值

表示将所有参数的缺省值(出厂值)读到参数表中,并写入到 EEPROM 中,下次上电将使用缺省参数。当用户将参数调乱,无法正常工作时,使用这个操作,可将所有参数恢复成出厂状态。因为不同的驱动器型号和电机型号对应的参数缺省值不同,在使用恢复缺省参数时,必须先保证电机代码(参数 P002)的正确性。


E-5EL 参数写入:参数表 □ EEPROM

E-rd 参数读取:参数表 🗁 EEPROM

E-dEF 恢复缺省值:出厂缺省值 □ 参数表、EEPROM


3.6 辅助功能

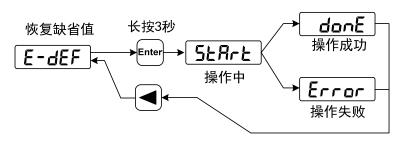
在主菜单下选择辅助功能 "Я-",按 ■ 键进入辅助功能方式。用 ▲、▼ 键选择操作模式。选中操作后按下 ■ 键进入对应功能,完毕后按 ■ 键退回到操作模式选择状态。

3.6.1 特殊功能☆

选择特殊功能,并按 ➡️ 键进入。用 ▲、▼ 键设置功能码,按下 ➡️ 键并保持 3 秒以上,激活操作。完毕后再可按 ➡️ 键退出。

Fn 编号	功能	说明
Fn36	编码器复位(多圈绝对 值编码器有效)	编码器 RESET 指令,用于编码器初始化, 编码器报警复位,以及多圈信息归零。更换 电池后,需执行此功能。
Fn37	编码器报警清除	编码器报警清除指令,用于编码器各种报警 清除。执行此命令,不会清除编码器多圈信 息。更换电池后,需执行此功能。

3.7 参数缺省值恢复


在发生以下情况时,请使用恢复缺省参数(出厂参数)功能:

- 参数被调乱,系统无法正常工作。
- 更换电机,新换电机与原配电机型号不同。

恢复缺省参数的步骤如下:

恢复全部参数缺省值

恢复所有参数为缺省值,用户修改过的参数也被恢复到出厂缺省值。执行参数管理中恢复缺省值操作。

恢复所有参数的缺省值

关电源,再次上电,即可工作。

第4章 运行

4.1 空载试运行

试运行的目的是确认以下事项是否正确:

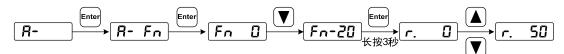
- 驱动器电源配线;
- 伺服电机动力线配线;
- 编码器配线;
- 伺服电机运转方向和速度。

4.1.1 接线和检查

在通电之前,确认电机:

- 电机空载,电机轴上不要加负载,已经安装在机械上也请脱开连接器。
- 由于电机加减速有冲击,必须固定电机。

在通电之前先检查以下几项:


- 连线是否正确? 尤其是驱动器 U、V、W 是否与电机 U、V、W 接线一一对应, 驱动器 L1、L2、L3、L1C、L2C、24V、0V 接线是否正确?
- 输入电压是否正确?
- 编码器电缆连接是否正确?

4.1.2 键盘调速试运行

注意:键盘调速试运行,需要设置参数 P304 (Mechatrolink-III模式开关)为 0 才可以运行!

参数 P304 为 0 时,驱动器为普通模式,可用于键盘调速试运行等功能;参数 P304 为 1 时,驱动器为 Mechatrolink-III模式,控制方式及指令均来源于 Mechatrolink-III总线。更改参数 P304 后,必须将参数存入 EEPROM,并且将驱动器断电后,再重新上电运行,方可生效!

- 1. 在执行该操作前,确认电机已脱开负载。
- 2. 接通电源,驱动器的显示器点亮,POWER 指示灯点亮,如果有报警出现,请检查连线。
- 3. 确认没有报警和异常的情况后,按下图执行以下操作:

用 ▲、▼ 键改变速度指令,电机按给定的速度运行。正数表示正转(CCW),负数表示反转(CW),最小给定速度是 0.1r/min。

注意: Fn 功能执行完成后,不能进行 E-SET 保存操作,必须断电重启,否则导致 Fn 的状态保存。

4.2 位置控制

参见"6.4.1位置模式"部分说明。

位置控制应用于需要精密定位的系统中,如数控机床、纺织机械等。

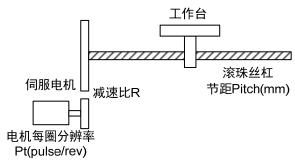
4.2.1 位置控制的参数设置

参数	名称	设置值	缺省值	参数说明
P097	忽略驱动禁止	3	3	使用正转驱动禁止(CCWL)和反转驱动禁止(CWL)。若设置为忽略,可不连接 CCWL、CWL。
P304	M3 模式开关	1	1	0: 驱动器内部控制; 1: 位置指令通过 M3 总线下发。

4.2.2 输入电子齿轮

通过电子齿轮可以定义输入到本装置的单位脉冲命令使传动装置移动任意距离, 上位控制器所产生的脉冲命令不需考虑传动系统的齿轮比、减速比或电机编码器线数。 下表是电子齿轮变量说明:

1 100 11 11 10 10 10 10 10 10 10 10 10 1				
变量	变量说明	本装置数值		
P_t	电机每圈分辨率(pulse/rev)	P027×P028=10000×1 =10000(pulse/rev)		
R	减速比	同增量式		
ΔP	一个指令脉冲移动量			
P_c	负载轴一转的指令脉冲数			
Pitch	滚珠丝杆节距(mm)			
D	滚轮直径(mm)			


计算公式:

电子齿轮比
$$(\frac{N}{M}) = \frac{$$
 电机每圈分辨率 (P_t) 负载轴一转的指令脉冲数 (P_c) ×减速比 (R)

其中,负载轴一转的指令脉冲 数 $(P_c) = \frac{$ 负载轴一转的移动量 $}{-$ 个指令脉冲移动量 (ΔP)

将上面计算结果进行约分,并使分子和分母都小于或等于 32767 的整数值,保证比值 在 1/50 < N/M < 200 范围内,写入参数中。

1. 电子齿轮在滚珠丝杠应用

对于滚珠丝杠负载,有

电子齿轮比
$$(\frac{N}{M}) = \frac{P_t}{P_c \times R}$$

其中,

$$P_c = \frac{Pitch}{\Delta P}$$

例如:

已知,减速比 1/1,节距 Pitch=8mm,一个脉冲移动量 $\Delta P=0.001mm$,计算电子齿轮比。

计算步骤:

● 计算电机每圈分辨率(Pt)

$$P_t = P027 \times P028 = 10000 \times 1 = 10000 (pulse / rev)$$

● 计算负载轴一转的指令脉冲数(Pc)

$$P_{c} = \frac{Pitch}{\Delta P} = \frac{8mm}{0.001mm} = 8000$$

● 计算电子齿轮比

电子齿轮比(
$$\frac{N}{M}$$
) = $\frac{P_t}{P_c \times R}$ = $\frac{10000}{8000 \times (1/1)}$ = $\frac{5}{4}$

● 设置参数(以第一分子为例) 分子 N=5,分母 M=4,设置 P029=5 和 P030=4。

2. 电子齿轮在分度盘应用

对于分度盘负载,有

电子齿轮比(
$$\frac{N}{M}$$
) = $\frac{P_t}{P_c \times R}$

其中,

$$P_c = \frac{360^{\circ}}{\Lambda P}$$

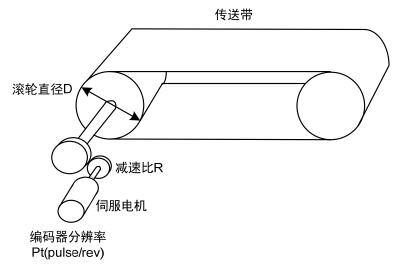
例如:

已知,减速比 1/3,一个脉冲移动量 $\Delta P = 0.1$ ° ,计算电子齿轮比。计算步骤:

● 计算电机每圈分辨率(Pt)

$$P_t = P027 \times P028 = 10000 \times 1 = 10000 (pulse / rev)$$

● 计算负载轴一转的指令脉冲数(Pc)


$$P_c = \frac{360^\circ}{\Lambda P} = \frac{360^\circ}{0.1^\circ} = 3600$$

● 计算电子齿轮比

电子齿轮比(
$$\frac{N}{M}$$
) = $\frac{P_t}{P_c \times R}$ = $\frac{10000}{3600 \times (1/3)}$ = $\frac{30000}{3600}$ = $\frac{25}{3}$

● 设置参数(以第一分子为例) 分子 N=25,分母 M=3,设置 P029=25 和 P030=3。

3. 电子齿轮在传送带应用

对于传送带,有

电子齿轮比(
$$\frac{N}{M}$$
) = $\frac{P_t}{P_t \times R}$

其中,

$$P_{c} = \frac{\pi D}{\Delta P}$$

例如:

已知,减速比 1/10,滚轮直径 D=200mm,一个脉冲移动量 $\Delta P=0.01mm$,计算电子齿轮比。

计算步骤:

● 计算电机每圈分辨率(Pt)

$$P_t = P027 \times P028 = 10000 \times 1 = 10000 (pulse / rev)$$

● 计算负载轴一转的指令脉冲数(Pc)

$$P_c = \frac{\pi D}{\Delta P} = \frac{3.14 \times 200}{0.01} = 62800$$

● 计算电子齿轮比

电子齿轮比
$$(\frac{N}{M}) = \frac{P_t}{P_c \times R} = \frac{10000}{62800 \times (1/10)} = \frac{100000}{62800} = \frac{250}{157}$$

● 设置参数(以第一分子为例) 分子 N=250,分母 M=157,设置 P029=250和 P030=157。

44

4. 电机旋转圈数和电子齿轮比的关系

电机旋转圈数和电子齿轮的关系为:

电机旋转圈数=
$$\frac{pulse \times N}{P_e \times M}$$

其中,pulse 是输入脉冲个数。例如,电机每圈分辨率 $P_{t=10000}$,N=20,M=3,pulse=1000, 计算为:

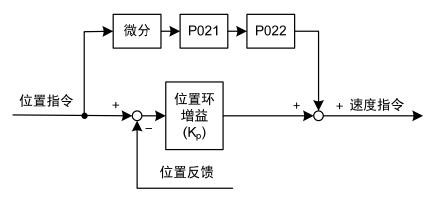
电机旋转圈数=
$$\frac{1000\times20}{10000\times3}=\frac{2}{3}$$
(圈)

5. 电机旋转速度和电子齿轮比的关系

电机旋转速度和电子齿轮的关系为:

电机速度
$$r/\min$$
)= $\frac{f(Hz)\times 60\times N}{P_t\times M}$

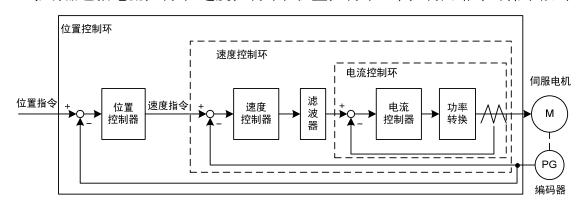
其中, f 是输入脉冲频率, 单位 Hz(pps), 例如, 电机每圈分辨率 P∈10000, N=3, M=1, f=100kHz(kpps), 计算为:


电机速度
$$(r/\min) = \frac{100 \times 10^3 \times 60 \times 3}{10000 \times 1} = 1800 (r/\min)$$

4.2.3 位置控制有关增益

参数	名称	参数范围	缺省值	单位
P009	第1位置环增益	1~1000	40	1/s
P013	第2位置环增益	1~1000	80	1/s
P021	位置环前馈增益	0~100	0	%
P022	位置环前馈滤波时间常数	0.20~50.00	1.00	ms

因为位置环包括速度环,依照先内环后外环次序,首先设置好负载转动惯量比, 再调整速度环增益、速度环积分时间常数,最后调整位置环增益。


以下是系统的位置控制器,位置环增益 K_p 增加可提高位置环频宽,但受速度环频宽限制。欲提高位置环增益,必须先提高速度环频宽。

前馈能降低位置环控制的相位滞后,可减小位置控制时的位置跟踪误差以及更短的定位时间。前馈量增大,位置控制跟踪误差减小,但过大会使系统不稳定、超调。若电子齿轮比大于10也容易产生噪声。一般应用可设置P021为0%,需要高响应、低跟踪误差时,可适当增加,不宜超过80%,同时可能需要调整位置环前馈滤波时间常数(参数P022)。

4.3 增益调整

驱动器包括电流控制环、速度控制环和位置控制环三个控制回路。控制框图如下:

理论上,内层的控制回路频宽一定要高于外层,否则整个控制系统会不稳定而造成振动或是响应不佳,因此这三个控制回路频宽的关系如下:

电流环频宽>速度环频宽>位置环频宽

由于驱动器已经调整好电流控制环为最佳状态,用户只需调整速度控制环和位置控制环参数。

4.3.1 增益参数

和增益有关的参数是:

参数	名称	参数范围	缺省值	单位
P005	第1速度环增益	1~3000	40	Hz
P006	第1速度环积分时间常数	1.0~1000.0	20.0	ms
P009	第1位置环增益	1~1000	40	1/s
P017	负载转动惯量比	0.0~200.0	1.0	倍

符号定义如下:

Kv: 速度环增益:

Ti: 速度环积分时间常数;

Kn: 位置环增益:

G: 负载转动惯量比 (P017);

JL: 折算到电机轴的负载转动惯量;

J_M: 电机转子转动惯量。

1. 速度环增益 K_v

速度环增益K_{*}直接决定速度环的响应频宽。在机械系统不产生振动或是噪音的前提下,增大速度环增益值,则速度响应会加快,对速度命令的跟随性越佳。但是过大的设定容易引起机械共振。速度环频宽表示为:

速度环频宽(
$$Hz$$
) = $\frac{1+G}{1+J_L/J_M} \times K_v(Hz)$

如果负载转动惯量比G设置正确($G=J_L/J_M$),则速度环频宽就等于速度环增益 K_v 。

2. 速度环积分时间常数 Ti

速度环积分可有效的消除速度稳态误差,快速反应细微的速度变化。在机械系统不产生振动或是噪音的前提下,减小速度环积分时间常数Ti,以增加系统刚性,降低稳态误差。如果负载惯量比很大或机械系统存在共振因素,必须确认速度回路积分时间常数够大,否则机械系统容易产生共振。如果负载转动惯量比G设置正确(G=JL/JM),利用以下公式得到速度环积分时间常数Ti:

$$T_i(ms) \ge \frac{4000}{2\pi \times K_V(Hz)}$$

3. 位置环增益 Kp

位置环增益直接决定位置环的反应速度。在机械系统不产生振动或是噪音的前提下,增加位置环增益值,以加快反应速度,减小位置跟踪误差,缩短定位时间。但过 大设定会造成机械系统抖动或定位超调。位置环频宽不可高于速度环频宽,一般

位置环频宽
$$(Hz) \le \frac{速度环频宽 (Hz)}{4}$$

如果负载转动惯量比G设置正确(G=JL/JM),则位置环增益Kp计算如下:

$$K_p(1/s) \le 2\pi \times \frac{K_v(Hz)}{4}$$

4.3.2 增益调整步骤

位置和速度频宽的选择必须由机械的刚性和应用场合决定,由皮带连接的输送机械刚性低,可设置为较低频宽;由减速器带动的滚珠丝杆的机械刚度中等,可设置为中等频宽;直接驱动滚珠丝杆或直线电机刚度高,可设置为高频宽。如果机械特性未知,可逐步加大增益以提高频宽直到共振,再调低增益即可。

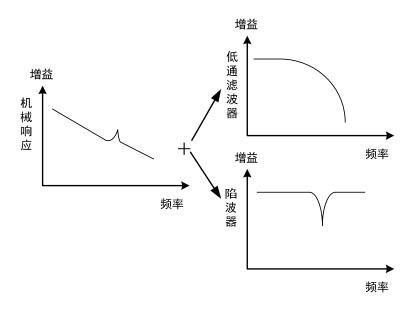
在伺服增益中,如果改变一个参数,则其它参数也需要重新调整。请不要只对某一个参数进行较大的更改。关于伺服参数的更改步骤,一般请遵守以下原则:

	701111 - 701111
提高响应	降低响应,抑制振动和超调
1.提高速度环增益K _v	1.降低位置环增益K _p
2.减小速度环积分时间常数Ti	2.增大速度环积分时间常数Ti
3.提高位置环增益K _p	3.降低速度环增益K _v
	1.提高速度环增益K _v 2.减小速度环积分时间常数T _i

速度控制的增益调整步骤:

- 1. 设定负载转动惯量比。
- 2. 设定速度环积分时间常数为较大值。
- 3. 速度环增益在不产生振动和异常声音的范围内调大,如果发生振动稍许调小。
- 4. 速度环积分时间常数在不产生振动的范围内调小,如果发生振动稍许调大。
- 5. 如果因机械系统发生共振等原因而无法调大增益,不能得到希望的响应性时,对转矩低通滤波器或陷波器调整抑制共振后,然后重新进行以上步骤操作以提高响应性。首先使用转矩低通滤波器,若效果不好再考虑使用陷波器。请参考 4.4 章 节。

位置控制的增益调整步骤:


- 1. 设定负载转动惯量比。
- 2. 设定速度环积分时间常数为较大值。
- 3. 速度环增益在不产生振动和异常声音的范围内调大,如果发生振动稍许调小。
- 4. 速度环积分时间常数在不产生振动的范围内调小,如果发生振动稍许调大。
- 5. 增大位置环增益,如果发生振动稍许调小。
- 6. 如果因机械系统发生共振等原因而无法调大增益,不能得到希望的响应性时,对转矩低通滤波器或陷波器调整抑制共振后,然后重新进行以上步骤操作以提高响应性。首先使用转矩低通滤波器,若效果不好再考虑使用陷波器。请参考 4.4 章 节。
- 7. 若需要更短的定位时间和更小的位置跟踪误差,可适当调整位置前馈。

4.4 共振抑制

当机械系统发生共振现象,可能是伺服系统刚度过大、响应过快造成,降低增益或许可以改善。驱动器提供低通滤波器和陷波器,在不改变增益情况下,达到抑制共振的效果。共振抑制有关的参数如下:

参数	名称	参数范围	缺省值	单位
P007	第1转矩滤波时间常数	$0.10 \sim 50.00$	1.00	ms
P200	第1共振陷波器频率	50~5000	5000	Hz
P201	第1共振陷波器品质因数	1~100	7	
P202	第1共振陷波器深度	0~60	0	dB
P203	第2共振陷波器频率	50~5000	5000	Hz
P204	第2共振陷波器品质因数	1~100	7	
P205	第2共振陷波器深度	0~60	0	dB

共振抑制的原理是采用滤波器抑制机械响应的共振峰,示意图如下:

两种滤波器的特点是:

滤波器种类	适合场合	优点	缺点
低通滤波器	高频共振	不需要知道准 确共振频率	带来相位滞后,系统频带降低。不适合中低频共振场合。
陷波器	中低频共振	不影响整体系 统频宽	必须知道准确共振频率,频率设置 有误反而影响性能。共振频率经常 漂移场合不适合。

4.4.1 低通滤波器

由参数 P007 设置,低通滤波器默认是有效的。低通滤波器对高频有很好的衰减,能较好抑制高频共振、噪声。例如使用滚珠丝杠机械,提高驱动器增益时,有时会发生高频共振,使用低通滤波器有较好效果。但系统响应频宽和相位裕度也降低了,系统有可能变得不稳定。如果系统是中低频共振,低通滤波器无法抑制。

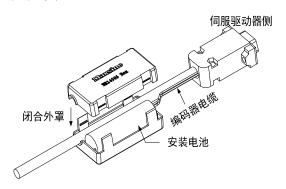
因伺服驱动而导致机器高频振动时,对转矩滤波器时间常数 T_f 进行调整。这样可能会消除振动。数值越小,越能进行响应性良好的控制,但受机械条件的限制;数值越大,越能抑制高频振动,太大则会造成相位裕度减小,引起振荡。如果负载转动惯量比G设置正确($G=J_L/J_M$),需满足:

$$T_f(ms) \le \frac{1000}{2\pi \times 2 \times K_v(Hz)}$$

4.4.2 陷波器

由参数P200~P205设置,两个陷波器可同时使用,能抑制两种不同的频率共振。 默认两个陷波器都是关闭的。如果可以知道共振频率,那么陷波器可以直接将共振量 消除。通常如果确定共振频率,使用陷波器比低通滤波器效果好。共振频率不明时, 可以按从高到低的顺序逐渐降低抑制频率,振动最小点的抑制频率就是最优设定值。 但如果共振频率随时间或其他因素偏移,而且偏移过大时,就不适合使用陷波器。

除了频率,还可调整陷波器深度、品质因数,但要注意设置合适。陷波深度深,机械共振抑制的效果可能很好,但会造成相位变化大,有时反而会加强振动。品质因数小,陷波宽度宽,机械共振抑制的效果可能很好,但会造成相位变化区域大,有时反而会加强振动。


4.5 绝对值编码器的设定

4.5.1 绝对值编码器多圈信息的保存

绝对值编码器默认为单圈绝对值。若用户需要多圈位置值,则需要将参数P090设置为1,保存并重启驱动器。

为了保存绝对值编码器的多圈位置数据,需要安装电池单元。

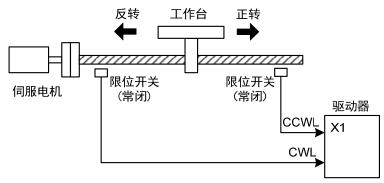
信号输入SD+、SD-(线的颜色分别为棕、棕白)、编码器电源0V、5V(线的颜色分别为黑+黑白,红+红白)连接在DB头上,外接电池引脚E+、E-(线的颜色分别为黄、黄白)连接在电池盒里面。

注意:请在伺服驱动器侧设置电池单元。电池单元请设置在伺服驱动器的任意一侧。 电池电压要求: 3.2VDC~4.8VDC

电池电压超出范围后,在上电时,伺服驱动器会报警(Err48),此时请更换电池。 更换电池后,为解除"编码器电池警报(Err48)"显示,请确保伺服驱动器处于未使 能状态。接通伺服驱动器控制部分电源,并将绝对值编码器初始化,初始化后,多圈 值为0。确认错误显示消失,伺服驱动器可正常工作。

4.5.2 绝对值编码器的初始化☆

在以下场合,须通过 Fn36 对绝对值编码器进行初始化,具体请参考 3.6.1 节。


- 最初起动机械时;
- 要将绝对值编码器的旋转量数据设为0时。

在以下场合,须通过 Fn37 进行编码器报警清除,具体请参考 3.6.1 节。

- 发生"编码器电池警报(Err48)"时:
- 发生"编码器内部故障警报(Err41)"时。

4.6 超程保护

超程保护功能是指当机械的运动部分超出设计的安全移动范围,限位开关动作,使电机强制停止的安全功能。超程保护示意图如下:

限位开关建议使用常闭接点,在安全范围内为闭合,超程为断开。连接到正转驱动禁止(CCWL)和反转驱动禁止(CWL),通过参数P097也可设置为使用与忽略。设置为使用,则必须接入限位信号;设置为忽略,则不需要该信号。参数缺省值是CCWL和CWL都忽略,如果需要使用,必须修改参数P097。即使在超程状态下,仍允许通过输入反向指令退出超程状态。

P097	反转驱动禁止 (CWL)	正转驱动禁止 (CCWL)
0	使用	使用
1	使用	忽略
2	忽略	使用
3(缺省)	忽略	忽略

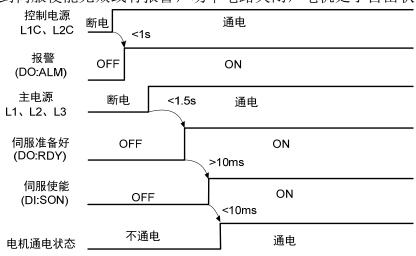
4.7 转矩限制

出于保护机械的目的,可以对输出转矩进行限制。

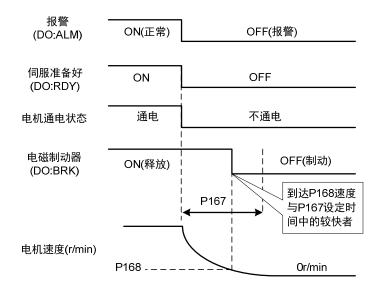
4.7.1 转矩限制参数

转矩限制有关的参数是:

参数	名称	参数范围	缺省值	单位	适用
P065	内部正转(CCW)转矩限制	0~300	300	%	ALL
P066	内部反转(CW)转矩限制	-300~0	-300	%	ALL
P069	试运行转矩限制	0~300	100	%	ALL

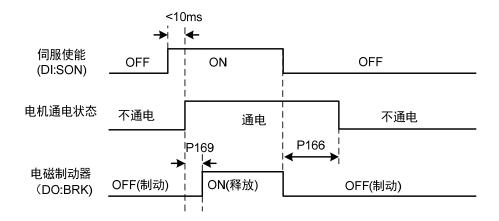

4.7.2 转矩限制模式

说明	正转(CCW)	反转(CW)
基本限制	参数 P065	参数 P066

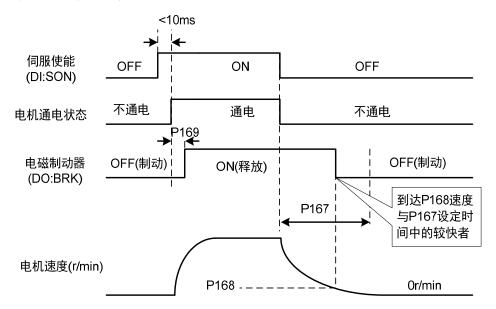

4.8 工作时序

4.8.1 电源接通时序

- 控制电源 L1C、L2C 与主电源 L1、L2、L3 同时或先于主电路电源接通。如果仅接通了控制电路的电源,伺服准备好信号(RDY)OFF。
- 主电源接通后,约延时 1.5 秒,伺服准备好信号(RDY) ON,此时可以接受伺服使能 (SON)信号,检测到伺服使能有效,功率电路开启,电机激励,处于运行状态。检测到伺服使能无效或有报警,功率电路关闭,电机处于自由状态。



4.8.2 伺服 ON 时报警时序


4.8.3 电机静止时的伺服 ON/OFF 动作时序

当电机转速低于参数 P165 时动作时序:

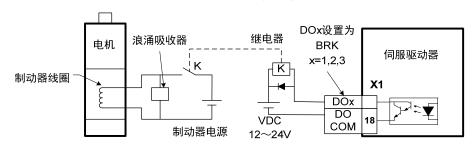
4.8.4 电机运转时的伺服 ON/OFF 动作时序

当电机转速高于参数 P165 时动作时序:

4.9 电磁制动器

由	磁制	えか	哭	右	关	紶	数.
т,	וינוו גיגוו	41	1111	´H	\mathcal{L}	~	ZXX :

参数	名称	参数范围	缺省值	单位
P165	电机静止速度检测点	0~1000	5	r/min
P166	电机静止时电磁制动器延时时间	0~2000	150	ms
P167	电机运转时电磁制动器等待时间	0~2000	0	ms
P168	电机运转时电磁制动器动作速度	0~3000	100	r/min
P169	电磁制动器打开的延迟时间	0~1000	0	ms


4.9.1 电磁制动器使用

下图是制动器接线图,驱动器的制动释放信号 BRK 连接继电器线圈,继电器触点连接制动器电源。制动器电源由用户提供,并且具有足够容量。建议安装浪涌吸收器来抑制继电器通/断动作造成的浪涌电压。也可用二极管作浪涌吸收器,要注意会造成少许制动延时。

电机停稳后静止后(速度小于 P165)伺服 OFF,这时电机继续通电以保持位置,制动器从释放到制动,稳定一段时间后(时间由参数 P166 确定),撤除电机供电。

电机从不使能状态变化到使能状态时,电机电流开通到电磁制动器松开(DO 输出端子 BRK ON)的延时时间由参数 P169 确定。

电机在运行中(速度大于 P165)伺服 OFF,这时电机电流切断,制动器继续呈释放状态,延时一段时间后,制动器制动。这是为了使电机从高速旋转状态减速为低速后,再使机械制动器动作,避免损坏制动器。延时时间是参数 P167 或电机速度减速到参数 P168 的速度所需时间,取两者中的最小值。

第5章参数

5.1 参数详解

5.1.1 0 段参数

参数	名称	范围	缺省值	单位
P000	密码	$0 \sim 9999$	315	

- 分级管理参数,可以保证参数不会被误修改。
- 设置为315,可以查看和修改0、1、2、3段参数。设置为非315数值,只能查看参数,但不能修改。一些特别的操作需要设置合适的密码。

参数	名称	范围	缺省值	单位
P001	驱动器代码	*	*	

● 当前使用的驱动器型号。出厂已设置好,用户不能修改。

参数	名称	范围	缺省值	单位
P003	软件版本	*	*	

● 软件版本号,不能修改。

参数	名称	范围	缺省值	单位
P005	第1速度环增益	1~3000	40	Hz

- 速度调节器的比例增益,增大参数值,可使速度响应加快,过大容易引起振动和 噪声。
- 如果 P017(转动惯量比)设置正确,则参数值等同于速度响应频宽。

参数	名称	范围	缺省值	单位
P006	第1速度环积分时间常数	1.0~1000.0	20.0	ms

- 速度调节器的积分时间常数,减小参数值,可减小速度控制误差,增加刚性,过 小容易引起振动和噪声。
- 设置为最大值(1000.0)表示取消积分,速度调节器为 P 控制器。

参数	名称	范围	缺省值	单位
P007	第1转矩滤波时间常数	$0.10{\sim}50.00$	1.00	ms

- 转矩的低通滤波器,可抑制机械引起振动。
- 数值越大,抑制振动效果越好,过大会造成响应变慢,可能引起振荡;数值越小,响应变快,但受机械条件限制。
- 负载惯量较小时,可设置较小数值,负载惯量较大时,可设置较大数值。

参数	名称	范围	缺省值	单位
P009	第1位置环增益	1~1000	40	1/s

● 位置调节器的比例增益,增大参数值,可减小位置跟踪误差,提高响应,过大可能导致超调或振荡。

参数	名称	范围	缺省值	单位
P010	第2速度环增益	1~3000	40	Hz

● 参考参数 P005 说明, 启用增益切换功能, 才需要设置。

参数	名称	范围	缺省值	单位
P011	第2速度环积分时间常数	1.0~1000.0	10.0	ms

● 参考参数 P006 说明, 启用增益切换功能, 才需要设置。

参数	名称	范围	缺省值	单位
P012	第2转矩滤波时间常数	0.10~50.0	1.00	ms

● 参考参数 P007 说明, 启用增益切换功能, 才需要设置。

参数	名称	范围	缺省值	单位
P013	第2位置环增益	1~1000	80	1/s

● 参考参数 P009 说明, 启用增益切换功能, 才需要设置。

参数	名称	范围	缺省值	单位
P017	负载转动惯量比	$0.0{\sim}200.0$	1.0	倍

● 机械负载转动惯量(折算到电机轴)对电机转子转动惯量的比率。

参数	名称	范围	缺省值	单位
P018	速度环 PDFF 控制系数	0~100	100	%

- 速度调节器的 PDFF 系数,可选择速度控制器结构,0 为 IP 调节器,100 为 PI 调节器,1~99 为 PDFF 调节器。
- 参数值偏大则系统具有高频率响应,参数值偏小则系统具有高刚度(抵抗偏差能力),中等数值兼顾频率响应和刚度。

参数	名称	范围	缺省值	单位
P019	速度检测滤波时间常数	$0.01{\sim}50.00$	2.00	ms

参数值越大,检测越平滑,参数值越小,检测响应越快,太小可能导致产生噪声; 太大可能导致振荡。

参数	名称	范围	缺省值	单位
P021	位置环前馈增益	0~100	0	%

● 前馈可减小位置控制时的位置跟踪误差,设置为 100 时,任何频率的指令脉冲下, 位置跟踪误差总是 0。 ● 参数值增大, 使位置控制响应提高, 过大会使系统不稳定, 容易产生振荡。

参数	名称	范围	缺省值	单位
P022	位置环前馈滤波时间常数	$0.20{\sim}50.00$	1.00	ms

● 对位置环前馈量的滤波,作用是增加前馈控制的稳定性。

参数	名称	范围	缺省值	单位
P027	编码器脉冲因子1	1~32767	10000	

● 位置控制时,设置默认情况下(电子齿轮比为 1:1),电机旋转一周所需要的指令脉冲个数。

P027 缺省值为 10000, P028 缺省值为 1。

PLUSE= P027×P028=10000×1=10000 表示在电子齿轮比为 1:1 时, 电机旋转一周所需要 10000 个指令脉冲。

● 用户需确保 P027×P028 的结果小于或等于 131072。

参数	名称	范围	缺省值	单位
P028	编码器脉冲因子 2	$1\sim 32767$	1	

● 编码器脉冲因子 2,使用方法参考参数 P027 的说明。

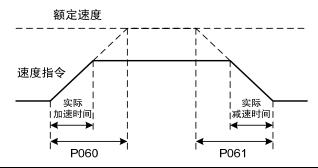
参数	名称	范围	缺省值	单位
P029	指令脉冲电子齿轮第1分子	$1\sim 32767$	1	
P030	指令脉冲电子齿轮分母	1~32767	1	

- 用于对输入脉冲进行分频或倍频,可以方便地与各种脉冲源相匹配,以达到用户 需要的脉冲分辨率。
- 指令脉冲电子齿轮分子 N 由参数 P029 设置。分母 M 由参数 P030 设置。
- 输入脉冲指令经过 N/M 变化得到位置指令,比值范围: 1/50<N/M<200。

参数	名称	范围	缺省值	单位
P036	指令脉冲输入方向	0~1	0	

● 参数意义:

0: 正常方向。1: 方向反向。


参数	名称	范围	缺省值	单位
P042	CWL,CCWL 方向禁止的方式	0~1	0	

- 当机械碰到机械限位开关,触发 CWL、CCWL 限制时,本参数用于选择禁止的方式。
- 参数意义:
 - 0: 限制该方向的转矩为0。
 - 1: 禁止该方向的脉冲输入。

参数	上 名称	范围	缺省值	单位
P060	速度指令加速时间	0~30000	0	ms

- 设置电机从零速到额定速度的加速时间。
- 如果指令速度比额定速度低,则需要的加速时间也相应缩短。

- 仅用于速度控制方式,位置控制方式无效。
- 如果驱动器与上位装置构成位置控制,此参数应设置为 0,否则影响位置控制性能。

参数	名称	范围	缺省值	单位
P061	速度指令减速时间	0~30000	0	ms

- 设置电机从额定速度到零速的减速时间。
- 如果指令速度比额定速度低,则需要的减速时间也相应缩短。
- 仅用于速度控制方式,位置控制方式无效。
- 如果驱动器与外部位置环组合使用,此参数应设置为 0,否则影响位置控制性能。

参数	名称	范围	缺省值	单位
P063	EMG(紧急停机)的减速时间	$0.001 \sim 10.000$	1.000	S

- 当 EMG(紧急停机)方式为减速停止时(P164=1)起作用。
- 设置 EMG(紧急停机)电机从 1000rpm 到零速的减速时间。

参数	名称	范围	缺省值	单位
P065	内部正转(CCW)转矩限制	0~300	300	%
P066	内部反转(CW)转矩限制	-300~0	-300	%

- 任何时候,这个限制都有效。
- 如果设置值超过系统允许的最大过载能力,则实际限制为系统允许的最大过载能力。

参数	名称	范围	缺省值	单位
P069	试运行转矩限制	0~300	100	%

- 设置试运行方式(速度 JOG 运行、键盘调速、演示方式)下的转矩限制值。
- 与旋转方向无关,正转反转都限制。
- 内外部转矩限制仍然有效。

参数	名称	范围	缺省值	单位
P070	正转(CCW)转矩过载报警水平	0~300	300	%
P071	反转(CW)转矩过载报警水平	-300~0	-300	%
P072	转矩过载报警检测时间	0~10000	0	10ms

- 当电机正转转矩超过 P070, 持续时间大于 P072 情况下, 驱动器报警, 报警号为 Err29, 电机停转。
- 当电机反转转矩超过 P071,持续时间大于 P072 情况下,驱动器报警,报警号为

Err29, 电机停转。

● 参数 P072 设置为 0 时, 屏蔽转矩过载报警。

参数	名称	范围	缺省值	单位
P075	最高速度限制	0~7500	5000	r/min

- 设置伺服电机的允许的最高限速。与旋转方向无关。
- 如果设置值超过系统允许的最大速度,实际速度也会限制在最大速度以内。

参数	名称	范围	缺省值	单位
P076	JOG 运行速度	0~7500	100	r/min

● 设置 JOG 操作的运行速度。

参数	名称	范围	缺省值	单位
P078	转矩控制时速度限制	0~5000	3000	r/min

- 在转矩控制时,电机运行速度限制在本参数以内。
- 可防止轻载出现超速现象。
- 出现超速时,接入速度负反馈来减小实际转矩,但实际转速会略高于限速值。

参数	名称	范围	缺省值	单位
P080	位置超差检测	0.00~327.67	4.00	圏

- 设置位置超差报警检测范围。
- 在位置控制方式下,当位置偏差计数器的计数值超过本参数值对应的脉冲时,伺服驱动器给出位置超差报警(Err 4)。
- 单位是圈,乘以电机每转一圈的分辨率,可得到脉冲数。

参数	名称	范围	缺省值	单位
P084	制动电阻选择开关	0~1	0	

- 参数意义:
 - 0: 采用内部制动电阻。
 - 1: 采用外部制动电阻。

参数	名称	范围	缺省值	单位
P085	外接制动电阻的阻值	10~750	50	Ω

- 根据实际外接制动电阻的阻值来设定此参数。
- 若采用内部制动电阻(P084=0),则此参数无效。

参数	名称	范围	缺省值	单位
P086	外接制动电阻的功率	10~10000	60	W

- 根据实际外接制动电阻的功率来设定此参数。
- 若采用内部制动电阻 (P084=0),则此参数无效。

参数	名称	范围	缺省值	单位
P090	绝对位置编码器类型(仅绝对值)☆	0~2	0	

- 参数意义: 0: 单圈绝对值编码器; 1: 多圈绝对值编码器; 2: 保留。
- 当编码器没有外接电池时,编码器无法保存多圈信息,请将此参数设为0。

参数	名称	范围	缺省值	单位
P093	风扇报警使能	0~1	1	

● 参数意义:

- 0: 屏蔽风扇故障报警 (除了特殊原因,不建议客户屏蔽该位);
- 1: 允许风扇故障报警。

参数	名称	范围	缺省值	单位
P094	风扇开启温度点	25~125	50	$^{\circ}$

- 当模块温度高于此温度时,驱动器散热风扇开始工作。
- 当模块温度低于此温度时,驱动器散热风扇停止工作。

参数	名称	范围	缺省值	单位
P096	初始显示项目	0~29	0	

● 驱动器上电后显示器的显示状态。参数意义:

P096	显示项目	P096	显示项目	P096	显示项目
0	电机速度	10	速度指令	20	控制方式
1	原始位置指令	11	转矩指令	21	报警号
2	位置指令	12	保留	22	保留
3	电机位置	13	保留	23	保留
4	位置偏差	14	数字输入 DI	24	母线电压,保留
5	转矩	15	数字输出 DO	25	保留
6	峰值转矩	16	保留	26	模块内部温度
7	电流	17	一转中的绝对位置	27	多圈的位置
8	峰值电流	18	累计负载率	28	历史报警记录
9	保留	19	制动负载率	29	保留

参数	名称	范围	缺省值	单位
P097	忽略驱动禁止	0~3	3	

- DI 输入中的正转驱动禁止(CCWL)和反转驱动禁止(CWL)用于极限行程保护,采用常闭开关,输入为 ON 时电机才能向该方向运行,OFF 时,不能向该方向运行。
- 若不使用极限行程保护,可通过本参数忽略,这样可不接入驱动禁止信号就能运行。
- 缺省值是忽略驱动禁止,若需要使用驱动禁止功能,请先修改本数值。
- 参数意义:

P097	反转驱动禁止	正转驱动禁止
100,	(CWL)	(CCWL)
0	使用	使用
1	使用	忽略
2	忽略	使用
3	忽略	忽略

第5章 参数

使用:输入信号 ON 时,电机可向该方向运行;OFF 时电机不能向该方运行。

忽略: 电机可向该方向运行, 该驱动禁止信号无作用, 可不接入该信号。

参数	名称	范围	缺省值	单位
P098	强制使能	0~1	0	

● 参数意义:

- 0: 使能由 DI 输入的 SON 控制;
- 1: 软件强制使能。

5.1.2 1 段参数

参数	名称	范围	缺省值	单位
P100	数字输入 DI1 功能	-37~37	1	
P101	数字输入 DI2 功能	-37~37	2	
P102	数字输入 DI3 功能	-37~37	3	
P103	数字输入 DI4 功能	-37~37	4	
P104	数字输入 DI5 功能	-37~37	20	

- 数字输入 DI 功能规划,参数绝对值表示功能,符号表示逻辑,功能请参考 5.2 章 节。
- 符号表示输入逻辑,正数表示正逻辑,负数表示负逻辑,ON 为有效,OFF 为无效:

参数值	DI 输入信号	DI 结果
正数	开路	OFF
正剱	导通	ON
负数	开路	ON
贝奴	导通	OFF

- 当多个输入通道功能选择一样时,功能结果为逻辑或关系。例如 P100 和 P101 都 设置为 1(SON 功能),则 DI1、DI2 任何一个 ON 时, SON 有效。
- 没有被参数 P100~P104 选中的输入功能,即未规划的功能,结果为 OFF(无效)。

参数	名称	范围	缺省值	单位
P108	数字高速输入1(HDI1)滤波使能	0~1	0	

● 参数意义:

- 0: 不使能
- 1: 使能

参数	名称	范围	缺省值	单位
P109	数字高速输入 2 (HDI2) 滤波使能	0~1	0	

● 参数意义:

- 0: 不使能
- 1: 使能

参数	名称	范围	缺省值	单位
P110~P114	数字输入 DI1~DI5 滤波	$0.1 \sim 100.0$	2.0	ms

- DI 输入的数字滤波时间常数。
- 参数值越小,信号响应速度越快;参数值越大,信号响应速度越慢,但滤除噪声能力越强。

	参数	名称	范围	缺省值	单位
P	120~P124	数字输入 DI 强制有效 1~5	00000~11111	00000	

● P120 对应功能由 5 位二进制表示如下:

数位	bit4	bit3	bit2	bit1	bit0
对应功能	CWL	CCWL	ARST	SON	NULL

● P121 对应功能由 5 位二进制表示如下:

数位	bit4	bit3	bit2	bit1	bit0
对应功能	CINV	CZERO	ZCLAMP	TCW	TCCW

● P122 对应功能由 5 位二进制表示如下:

7 7 7 7 14	J., . ,		-		
数位	bit4	bit3	bit2	bit1	bit0
对应功能	TRQ2	TRQ1	SP3	SP2	SP1

● P123 对应功能由 5 位二进制表示如下:

数位	bit4	bit3	bit2	bit1	bit0
对应功能	GEAR2	GEAR1	GAIN	CMODE	EMG

● P124 对应功能由 5 位二进制表示如下:

数位	bit4	bit3	bit2	bit1	bit0
对应功能	REF	GOH	PC	INH	CLR

- 用于强制 DI 输入的功能有效。如果功能对应位设置为 1,则该功能强制 ON(有效)。
- DI 符号的意义参考 5.2 章节。参数意义:

本参数中某一位	对应功能[注]	功能结果
0	未规划	OFF
0	已规划	由输入信号决定
1	未规划或已规划	ON

注:已规划是指被参数 P100~P104 选中的功能。 未规划是指没有被参数 P100~P104 选中的功能。

参数	名称	范围	缺省值	单位
P130	数字输出 DO1 功能	-31~31	2	
P131	数字输出 DO2 功能	-31~31	3	
P132	数字输出 DO3 功能	-31~31	8	
P133	数字输出 DO4 功能	-31~31	0	
P134	数字输出 DO5 功能	-31~31	0	

● 数字输出 DO 功能规划,参数绝对值表示功能,符号表示逻辑,功能请参考 5.3 章节。

- 0 为强制 OFF, 1 为强制 ON。
- 符号代表输出逻辑,正数表示正逻辑,负数表示负逻辑:

参数值	对应功能	DO 输出信号
正数	ON	导通
止剱	OFF	截止
各米	ON	截止
负数	OFF	导通

参数	名称	范围	缺省值	单位
P149	动态制动的延时时间	0~1000	0	ms

● 参数意义:

动态制动延时时间,设置为0时,动态制动功能无效。

参数	名称	范围	缺省值	单位
P150	定位完成范围	0~32767	10	脉冲
P151	定位完成回差	0~32767	5	脉冲

- 设定位置控制下定位完成脉冲范围。
- 当位置偏差计数器内的剩余脉冲数小于或等于本参数设定值时,数字输出 DO 的 COIN(定位完成)ON,否则 OFF。
- 比较器具有回差功能,由参数 P151 设置。

参数	名称	范围	缺省值	单位
P152	定位接近范围	0~32767	500	脉冲
P153	定位接近回差	0~32767	50	脉冲

- 设定位置控制下定位接近脉冲范围。
- 当位置偏差计数器内的剩余脉冲数小于或等于本参数设定值时,数字输出 DO 的 NEAR (定位附近) ON, 否则 OFF。
- 比较器具有回差功能,由参数 P153 设置。
- 用于在即将定位完成时,上位机接受 NEAR 信号对下一步骤进行准备。一般参数 值要大于 P150。

参数	名称	范围	缺省值	单位
P154	到达速度	-5000~5000	500	r/min
P155	到达速度回差	0~5000	30	r/min
P156	到达速度极性	0~1	0	

- 电机速度超过本参数时,数字输出 DO的 ASP(速度到达)ON,否则 OFF。
- 比较器具有回差功能,由参数 P155 设置。
- 具有极性设置功能:

P156	P154	比较器
0	>0	速度不分方向
1	>0	仅检测正转速度
1	<0	仅检测反转速度

参数	名称	范围	缺省值	单位
P157	到达转矩	-300~300	100	%
P158	到达转矩回差	0~300	5	%
P159	到达转矩极性	0~1	0	

- 电机转矩超过本参数时,数字输出 DO的 ATRQ(转矩到达)ON,否则 OFF。
- 比较器具有回差功能,由参数 P158 设置。
- 具有极性设置功能:

P159	P157	比较器
0	>0	转矩不分方向
1	>0	仅检测正转转矩
1	<0	仅检测反转转矩

参数	名称	范围	缺省值	单位
P160	零速检测点	0~1000	10	r/min
P161	零速检测回差	0~1000	5	r/min

- 电机速度低于本参数时,数字输出 DO 的 ZSP (零速) ON,否则 OFF。
- 比较器具有回差功能,由参数 P161 设置。

参数	名称	范围	缺省值	单位
P162	保留	0~1	0	

参数	名称	范围	缺省值	单位
P163	位置偏差清除方式	0~1	0	

- 位置控制时,清除位置偏差计数器,使用 DI 中的 CLR(位置偏差清除)。
- 参数意义,位置偏差清除发生在:
 - 0: CLR ON 电平
 - 1: CLR 上沿(OFF 变 ON 瞬间)

参数	名称	范围	缺省值	单位
P164	紧急停机的方式	0~1	0	

- 当 DI 中的 EMG (紧急停机)ON 时,本参数意义为:
 - 0: 驱动器直接切断电机电流, 电机自由停止
 - 1: 驱动器保持使能状态,控制电机以 P063 所定义的加减速时间减速停止。

参数	名称	范围	缺省值	单位
P165	电机静止速度检测点	0~1000	5	r/min

- 电机静止检测,电机速度低于参数值认为电机静止。
- 仅用于电磁制动器时序判断。

参数	名 称	范围	缺省值	单位
P166	电机静止时电磁制动器延时时间	0~2000	150	ms

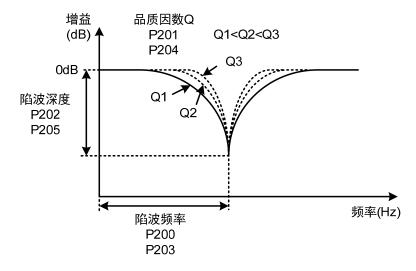
● 当系统从使能状态变化到不使能或发生报警时,定义电机静止期间从电磁制动器

制动(DO 输出端子 BRK OFF)到电机电流切断的延时时间。

● 此参数是使制动器可靠制动后再切断电流,避免电机的微小位移或工件跌落。参数不应小于机械制动的延迟时间。相应时序参见 4.9 章节。

参数	名称	范围	缺省值	单位
P167	电机运转时电磁制动器等待时间	0~2000	0	ms
P168	电机运转时电磁制动器动作速度	0~3000	100	r/min

- 当系统从使能状态变化到不使能或发生报警时,定义电机运转期间从电机电流切断到电磁制动器制动(DO 输出端子 BRK OFF)的延时时间。
- 此参数是使电机从高速旋转状态减速为低速后,再让制动器制动,避免损坏制动器;
- 实际动作时间是 P167 或电机减速到 P168 数值所需时间,取两者中的最小值。相应时序参见 4.9 章节。


参数	名称	范围	缺省值	单位
P169	电磁制动器打开的延迟时间	0~1000	0	ms

● 当系统从不使能状态变化到使能状态时,定义电机电流开通到电磁制动器松开 (DO 输出端子 BRK ON)的延时时间。相应时序参见 4.9 章节。

5.1.3 2 段参数

参数	名称	范围	缺省值	单位
P200	第1共振陷波器频率	50~5000	5000	Hz

- 陷波器是用来消除因机械引起的特定频率共振的滤波器。
- 若参数 P202 设置为 0 则关闭此陷波器。

参数	名称	范围	缺省值	单位
P201	第1共振陷波器品质因数	1~100	7	

● 品质因数 Q 表示陷波器形状, Q 越大陷波器形状越尖锐, 陷波宽度(-3dB)越窄。

品质因数
$$Q = \frac{陷波频率}{陷波宽度}$$

参数	名称	范围	缺省值	单位
P202	第1共振陷波器深度	0~60	0	dB

- 设置陷波器陷波深度,参数越大,陷波深度越大,即滤波器增益衰减越大。设置 为 0 表示关闭陷波器。
- 用 dB 单位表示的陷波深度 D 为:

$$D = -20 \log(1 - \frac{P202}{100})(dB)$$

dB]	输入	[dB]	输入	[dB]	输入	[dB]	输入	[dB]	输入
表示	输出比	表示	输出比	表示	输出比	表示	输出比	表示	输出比
0	1	-13	0.224	-26	0.050	-39	0.011	-52	0.003
-1	0.891	-14	0.200	-27	0.045	-40	0.010	-53	0.002
-2	0.794	-15	0.178	-28	0.040	-41	0.009	-54	0.002
-3	0.708	-16	0.158	-29	0.035	-42	0.008	-55	0.002
-4	0.631	-17	0.141	-30	0.032	-43	0.007	-56	0.002
-5	0.562	-18	0.126	-31	0.028	-44	0.006	-57	0.001
-6	0.501	-19	0.112	-32	0.025	-45	0.006	-58	0.001
-7	0.447	-20	0.10	-33	0.022	-46	0.005	-59	0.001
-8	0.398	-21	0.089	-34	0.020	-47	0.004	-60	0.001
-9	0.355	-22	0.079	-35	0.018	-48	0.004		
-10	0.316	-23	0.71	-36	0.016	-49	0.004		
-11	0.282	-24	0.063	-37	0.014	-50	0.003		
-12	0.251	-25	0.056	-38	0.013	-51	0.003		

参数	名称	范围	缺省值	单位
P203	第2共振陷波器频率	50~5000	5000	Hz

- 陷波器是用来消除因机械引起的特定频率共振的滤波器。
- 若 P205 设置为 0 则关闭此陷波器。

参数	名称	范围	缺省值	单位
P204	第2共振陷波器品质因数	1~100	7	

● 参考参数 P201 的说明。

参数	名称	范围	缺省值	单位
P205	第2共振陷波器深度	0~60	0	dB

● 设置陷波器陷波深度,设置为 0 表示关闭陷波器。其他参考 P202 说明。

参数	名称	范围	缺省值	单位
P206	第2转矩滤波器频率	100~5000	5000	Hz

● 第2转矩滤波器(二阶类型)的截止频率,作用同第一转矩指令滤波器。

参数	名称	范围	缺省值	单位
P207	第2转矩滤波器品质因数	1~100	50	

● 第2转矩滤波器(二阶类型)的品质因数,作用同第一转矩指令滤波器。

参数	名称	范围	缺省值	单位
P208	增益切换选择	0~15	0	

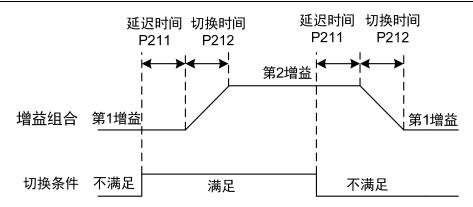
● 参数意义:

- 0: 固定第1增益。
- 1: 固定第2增益。
- 2: DI 输入 GAIN 端子控制, OFF 为第 1 增益, ON 为第 2 增益。
- 3: 指令脉冲频率控制,输入指令脉冲频率超过 P209 时切换为第 2 增益。
- 4: 脉冲偏差控制,位置脉冲偏差超过 P209 时切换为第 2 增益。
- 5: 电机转速控制, 电机速度超过 P209 时切换为第 2 增益。
- 第1增益和第2增益是组合形式,每组4个参数,同时切换。

	第1增益	第2增益		
参数	名称	参数	名称	
P005	第1速度环增益	P010	第2速度环增益	
P006	第1速度环积分时间常数	P011	第2速度环积分时间常数	
P007	第1转矩滤波时间常数	P012	第2转矩滤波时间常数	
P009	第1位置环增益	P013	第2位置环增益	

参数	名称	范围	缺省值	单位
P209	增益切换水平	0~32767	100	
P210	增益切换水平回差	0~32767	5	

- 根据参数 P208 的设定,切换条件和单位各不同。
- 参数 P210 与 P209 同单位。
- 比较器具有回差功能,由参数 P210 设置。


P208	增益切换条件	单位
3	指令脉冲频率	0.1kHz(kpps)
4	脉冲偏差	pulse
5	电机转速	r/min

参数	名称	范围	缺省值	单位
P211	增益切换延迟时间	0~3000	5	ms

- 增益切换条件满足到开始切换的延迟时间。
- 如果在延迟阶段检测到切换条件不满足则取消切换。

参数	名称	范围	缺省值	单位
P212	增益切换时间	0~3000	5	ms

- 增益切换时,当前增益组合在此时间内线性平滑渐变到目标增益组合,组合内的 各个参数同时变化。
- 可避免参数突然变化引起冲击。

参数	名称	范围	缺省值	单位
P213	陷波器设置	$0{\sim}$ FFFF	0	

● 参数说明:

2X 00 / 1 ·	
Bit 位	说明
Bit0	第一陷波器自动设置,0:关闭;1:开启
Bit1	第二陷波器自动设置,同上
Bit2	第三陷波器自动设置,同上
Bit3	第四陷波器自动设置,同上
Bit4	第一陷波器自动设置模式,
DII4	0: 自动设置成功后关闭自动设置功能; 1: 一直工作
Bit5	第二陷波器自动设置模式,同上
Bit6	第三陷波器自动设置模式,同上
Bit7	第四陷波器自动设置模式,同上
Bit8~Bit15	保留

参数	名称	范围	缺省值	单位
P214	第 3 共振陷波器频率	50~5000	5000	Hz

- 陷波器是用来消除因机械引起的特定频率共振的滤波器。
- 若 P205 设置为 0 则关闭此陷波器。

参数	名称	范围	缺省值	单位
P215	第 3 共振陷波器品质因数	1~100	7	

● 参考参数 P201 的说明。

参数	名称	范围	缺省值	单位
P216	第 3 共振陷波器深度	0~60	0	dB

● 设置陷波器陷波深度,设置为0表示关闭陷波器。其他参考P202说明。

参数	名称	范围	缺省值	单位
P217	第4共振陷波器频率	50~5000	5000	Hz

- 陷波器是用来消除因机械引起的特定频率共振的滤波器。
- 若 P205 设置为 0 则关闭此陷波器。

参数	名称	范围	缺省值	单位
P218	第4共振陷波器品质因数	1~100	7	

● 参考参数 P201 的说明。

参数	名称	范围	缺省值	单位
P219	第4共振陷波器深度	0~60	0	dB

● 设置陷波器陷波深度,设置为 0表示关闭陷波器。其他参考 P202 说明。

参数	名称	范围	缺省值	单位
P221	低频抑制最小检测幅值	3~32767	5	脉冲

● 低频抑振最小检测值。

参数	名称	范围	缺省值	单位
P222	振动抑制的补偿系数	1.0~100.0	1.0	

- 振动抑制开关打开时有效。
- 数值越大,抑制效果越明显,但是数值太大容易带来机械噪声。

参数	名称	范围	缺省值	单位
P223	振动抑制模式	0~3	0	

- 参数意义:
 - 0: 振动抑制功能无效
 - 1: 振动抑制模式 1, 自动检测振动频率, 适用于惯量变化不大场合。
 - 2: 振动抑制模式 2, 自动检测振动频率,适用于惯量始终变化的场合。
 - 3: 振动抑制模式3, 手动设置振动频率, 适合振动频率已知场合。

参数	名称	范围	缺省值	单位
P224	手动设置振动周期	0~1000	0	ms

● 当振动抑制模式(P223)设为3时,此参数用于设置需要抑制的振动周期。

参数	名称	范围	缺省值	单位
P225	厂家保留	$0{\sim}$ FFFF	0	

参数	名称	范围	缺省值	单位
P226	中频振动 1 频率	50~2000	100	Hz

● 中频抑振 1 开关打开时有效 (P229 不为 0)。 频率点手动设置模式 (P229=1),需通过伺服上位机软件录波功能寻找中频振动 点。

参数	名称	范围	缺省值	单位
P227	中频抑振 1 的补偿系数	1~1000	100	%

- 建议首先用 Fn1 功能推定负载惯量。
- 若伺服惯量(P017)设置合适,此参数建议设置为 100。 若在无法推定惯量情况下,该值与实际负载惯量成反比关系。

参数	名称	范围	缺省值	单位
P228	中频抑振 1 的阻尼系数	0~300	150	%

● 增大阻尼系数可以提高防振效果,但阻尼系数过大反而会增大振动。

参数	名称	范围	缺省值	单位
P229	中频抑振 1 开关	0~2	0	

- 参数意义:
 - 0: 无效
 - 1: 有效
 - 2: 自动设置

参数	名称	范围	缺省值	单位
P231	中频振动 2 频率	50~2000	100	Hz

● 中频抑振 2 开关打开时有效(P234 不为 0)。 频率点手动设置模式(P234=1),需通过伺服上位机软件录波功能寻找中频振动 点。

参数	名称	范围	缺省值	单位
P232	中频抑振 2 的补偿系数	1~1000	100	%

- 建议首先用 Fn1 功能推定负载惯量。
- 若伺服惯量(P017)设置合适,此参数建议设置为 100。 若在无法推定惯量情况下,该值与实际负载惯量成反比关系。

	777 7 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				
参数	名称	范围	缺省值	单位	
P233	中频抑振 2 的阻尼系数	0~300	150	%	

● 增大阻尼系数可以提高防振效果,但阻尼系数过大反而会增大振动。

参数	名称	范围	缺省值	单位
P234	中频抑振 2 开关	0~2	0	

- 参数意义:
 - 0: 无效
 - 1: 有效
 - 2: 自动设置

参数	名称	范围	缺省值	单位
P235	高级控制速度环过调制系数	10~1000	100	%

● 高级控制模式下生效,默认值为 100%,增加该值可以提高接近给定速度时的收

敛速度,减小该值则可以提高接近给定速度时的平滑性建议取值 75-150,在需要提高收敛速度的场合一般可以提高该值到 120。

参数	名称	范围	缺省值	单位
P236	速度反馈选择	0~1	0	

- 参数意义:
 - 0: 速度反馈来源于滤波器
 - 1: 速度反馈来源于观测器

参数	名称	范围	缺省值	单位
P237	高级控制速度环高响应模式	0~2	0	

- 高级控制速度环高响应模式用于对抗扰性要求较高的场合,可以较好地应对外在 扰动情况,减小瞬间速度波动并尽快恢复目标速度。
 - 0: 高级控制速度环高响应模式关闭
 - 1: 高级控制速度环高响应模式开启,并保持默认增益百分比
 - 2: 高级控制速度环高响应模式开启, 且增益百分比可调。

参数	名称	范围	缺省值	单位
P238	高级控制速度环高响应模式增益百 分比	0~1000	50	%

● 该参数仅在高级控制高响应模式使能(P237=1)情况下生效,用于调整高级控制高响应模式的增益百分比,一般设置为 20~80 即可满足需要,数值设置过高易引起机械振动情况。

参数	名称	范围	缺省值	单位
P239	速度前馈增益	$0.0 \sim 100.0$	0.0	%

● 该参数用于设置速度前馈的增益百分比。

参数	名称	范围	缺省值	单位
P240	速度前馈滤波时间常数	$0.00{\sim}50.00$	0.00	ms

● 该参数用于设置速度前馈的滤波时间常数。

参数	名称	范围	缺省值	单位
P241	摩擦补偿增益	10~1000	100	%

- 建议首先用 Fn1 功能推定负载惯量。
- 若伺服惯量(P017)设置合适,此参数建议设置为 100。 若在无法推定惯量情况下,该值与实际负载惯量成反比关系。

参数	名称	范围	缺省值	单位
P242	摩擦补偿阻尼系数	$0 \sim 1000$	0	%

● 增大阻尼系数可以提高防振效果,但阻尼系数过大反而会增大振动。参数设置为 0 时,关闭摩擦补偿功能。

参数	名称	范围	缺省值	单位
P243	摩擦补偿观测器增益	0~1200	400	Hz

● 提高观测器增益可更快的对外部扰动进行补偿,但增益过大在机械存在共振频率时,会产生振动。

参数	名称	范围	缺省值	单位
P244	高级控制模式下电流环方式选择	0~1	1	

- 该参数仅在 P247=1 时生效。
 - 0: 仅速度环采用高级控制模式
 - 1: 速度环与电流环均采用高级控制模式

参数	名称	范围	缺省值	单位
P245	高级控制非线性函数结构	0~1	1	

● 参数意义:

- 0: 高级控制中非线性函数类型采用结构 0
- 1: 高级控制中非线性函数类型采用结构 1

参数	名称	范围	缺省值	单位
P246	高级控制反馈速度来源	0~1	0	

● 参数意义:

- 0: 高级控制中反馈速度来源为原始速度
- 1: 高级控制中反馈速度来源为滤波后速度

参数	名称	范围	缺省值	单位
P247	高级控制	0~1	0	

● 参数意义:

- 0: 伺服环路控制器采用传统控制方式
- 1: 伺服环路控制器采用高级控制方式

参数	名称	范围	缺省值	单位
P248	高级控制速度环带宽	100~1000	300	Hz

● 高级控制速度观测器带宽,增大参数值,可使速度跟随能力与抗扰能力增强,过 大容易受噪声干扰。

参数	名称	范围	缺省值	单位
P249	高级控制速度观测器带宽参数设置 有效	0~1	0	

● 参数意义:

- 0: 高级控制速度观测器带宽参数设置无效
- 1: 高级控制速度观测器带宽参数设置有效

参数	名称	范围	缺省值	单位
P250	高级控制电流观测器带宽	50~400	180	10Hz

● 高级控制电流观测器带宽,增大参数值,可使电流跟随能力与抗扰能力增强,过 大容易受噪声干扰。

参数	名称	范围	缺省值	单位
P251	高级控制电流观测器带宽参数设置 有效	0~1	0	

● 参数意义:

- 0: 高级控制电流观测器带宽参数设置无效
- 1: 高级控制电流观测器带宽参数设置有效

参数	名称	范围	缺省值	单位
P252	高级控制第一转矩滤波时间常数	5~5000	10	0.01ms

- 转矩的低通滤波器,可抑制机械引起振动,减小转矩电流波动。
- 数值越大,抑制振动效果越好,转矩电流波动越小,过大会造成响应变慢,可能引起振荡,数值越小,响应变快,但受机械条件限制。
- 建议设置范围为5~15,若超出此范围容易引起系统振荡。

参数	名称	范围	缺省值	单位
P253	高级控制非线性函数类型	0~5	0	

● 参数意义:

- 0: 线性
- 1: 非线性类型 1
- 2: 非线性类型 2
- 3: 非线性类型 3
- 4: 非线性类型 4
- 5: 非线性类型 5

参数	名称	范围	缺省值	单位
P254	高级控制非线性函数增益倍数	0~100	15	0.1

● 高级控制非线性函数增益倍数,数值越大,速度跟随与抗扰能力越强。

参数	名称	范围	缺省值	单位
P255	速度观测器增益	10~1000	120	Hz

● 速度观测器增益的提高可使得观测器输出更快的跟踪到实际的速度反馈。

参数	名称	范围	缺省值	单位
P256	速度观测器补偿系数	0~1000	150	%

● 默认值不建议修改。

参数	名称	范围	缺省值	单位
P257	保留	0~500	0	

参数	名称	范围	缺省值	单位
P258	惯量辨识	0~9	0	

● 参数意义:

- 0: 关闭
- 1: 保留,厂家使用
- 2: 在线模式

参数	名称	范围	缺省值	单位
P259	保留	10~1000	80	

参数	名称	范围	缺省值	单位
P260	重力补偿	$0.0 \sim 100.0$	0.0	%

● 垂直轴负载的补偿力矩。

参数	名称	范围	缺省值	单位
P26	正向静摩擦峰值	0.0~100.0	0.0	%

● 正方向位置指令时补偿的摩擦力峰值。

参数	名称	范围	缺省值	单位
P262	反向静摩擦峰值	$0.0 \sim 100.0$	0.0	%

反方向位置指令时补偿的摩擦力峰值。

参数	名称	范围	缺省值	单位
P263	正向静摩擦低值	0.0~100.0	0.0	%

● 正方向位置指令时补偿的摩擦力低值。

参数	名称	范围	缺省值	单位
P264	反向静摩擦低值	0.0~100.0	0.0	%

● 反方向位置指令时补偿的摩擦力低值。

参数	名称	范围	缺省值	单位
P265	额定滑动摩擦	$0.0 \sim 100.0$	0.0	%

● 位置模式运行时,对应于额定转速下补偿的滑动摩擦力。

参数	名称	范围	缺省值	单位
P266	静摩擦速度切换点	$0.0 \sim 100.0$	2.0	rpm

● 静摩擦补偿生效的速度切换阀值。

参数	名称	范围	缺省值	单位
P267	滑动摩擦速度切换点	$0.0 \sim 100.0$	0.0	rpm

● 滑动摩擦补偿生效的速度切换阀值。

参数	名称	范围	缺省值	单位
P268	保留	1000~32000	15000	S

参数	名称	范围	缺省值	单位
P269	惯量推定模式	0~10	0	

● 设定惯量推定模式,设置值越大推定惯量时默认惯量设置值越大。

参数	名称	范围	缺省值	单位
P270	模型追踪控制开关	0~3	0	

- 建议首先用 Fn1 功能推定负载惯量。
- 适用于位置控制,根据不同的负载选择合适的参数,可提升系统的响应。
- 参数意义:
 - 0: 模型追踪无效
 - 1: 适用刚性负载
 - 2: 适用柔性负载
 - 3: 通用型

参数	名称	范围	缺省值	单位
P271	模型追踪控制增益	10~2000	40	Hz

- 模型追踪控制增益,模式1~3均有效。
- 数值越大,响应越快,过大有可能带来噪音。

参数	名称	范围	缺省值	单位
P272	模型跟踪阻尼比	50~200	100	

参数	名称	范围	缺省值	单位
P273	模型追踪正方向比例控制	0~1000	100	%

- 模型追踪正方向控制偏差,模式1~3均有效。
- 通过调整此参数,可以分开调节正转和反转的响应速度。
- 数值越大,转矩环前馈作用越大,过大有可能带来噪音。

参数	名称	范围	缺省值	单位
P274	模型追踪反方向比例控制	0~1000	100	%

● 说明同 P273。

参数	名称	范围	缺省值	单位
P277	模型追踪速度补偿前馈	0~100	100	%

● 模型追踪速度补偿前馈,数值越大,速度环前馈作用越大,过大有可能带来噪音。

● 模式 1~3 均有效。

参数	名称	范围	缺省值	单位
P280	模型追踪滤波时间	$0.10 \sim 50.00$	0.50	ms

● 模型追踪速度补偿前馈的滤波时间,数值越大,噪音越小,过大会带来补偿的滞后。

● 仅模式3有效。

参数	名称	范围	缺省值	单位
P281	模型跟踪速度环增益	1~3000	40	Hz

● 参数意义:

模型跟踪速度环增益,单位为Hz。

参数	名称	范围	缺省值	单位
P282	模型跟踪速度环积分时间常数	1.0~1000.0	20.0	ms

● 参数意义:

模型跟踪速度环积分常数,单位为 ms。

参数	名称	范围	缺省值	单位
P283	速度环积分分离功能积分项限幅百分比	0~100	0	%

● P284=1 时生效。

参数	名称	范围	缺省值	单位
P284	速度环积分分离功能使能	0~1	0	

参数	名称	范围	缺省值	单位
P285	振动报警时间	0~100	6	S

● 设置为 100 时不生效,每 3 对应 1s。

参数	名称	范围	缺省值	单位
P286	振动检出	0~2000	80	Hz

参数	名称	范围	缺省值	单位
P287	振动检出低通滤波器	1~2000	50	Hz

参数	名称	范围	缺省值	单位
P288	振动检出高通滤波器	10~2000	100	Hz

参数	名称	范围	缺省值	单位
P289	振动检出水平	0~2000	30	Hz

参数	名称	范围	缺省值	单位
P295	振动等级	1~200	100	rpm

5.1.4 3 段参数

参数	名称	范围	缺省值	单位
P300	驱动器站号	3~239	3	

- 驱动器在 Mechatrolink-III网络中的站地址由驱动器站号来决定,在选择了合适的 厂商参数(P307)之后,站号设定值需要与系统上对应的设置值相同,参数更改 后,必须将参数存入 EEPROM,并且将驱动器断电后,再重新上电运行,方可生效!
- P307 设置为 0 时,驱动器的站号被设置成 P300。
- P307 设置为 1 时,驱动器的站号被设置成 P300+0x20,适用于新代系统。
- 驱动器的站地址需由此参数各自设定不同的驱动器站号,一组驱动器仅能设定唯一站号,若重复设定站号将导致 Mechatrolink-III 无法正常通信。

参数	名称	范围	缺省值	单位
P30	Mechatrolink-III帧长	0~1	1	

● Mechatrolink-Ⅲ帧字节数有两种规格,包含子命令内容时,帧字节数为48个字节, 对应 P302 为 1,不包含子命令内容是,帧字节数为 32 个字节,对应 P302 为 0。 参数更改后,必须将参数存入 EEPROM,并且将驱动器断电后,再重新上电运行, 方可生效!

参数	2称	范围	缺省值	单位
P30	Mechatrolink-III模式开关	0~1	1	

- 通过此参数选择Mechatrolink-III模式或者普通模式,值为0时选择普通模式,用户可在此模式下进行试机操作,以检测硬件问题;值为1时选择Mechatrolink-III模式,在此模式下配合Mechatrolink-III C1主站进行相应的操作。
- 参数意义:
 - 0: 驱动器内部控制;
 - 1: 位置指令通过 M3 总线下发。

参数	名称	范围	缺省值	单位
P306	插补模式样条类型	0~2	2	

- 通过此参数选择在插补模式下位移线段之间的衔接方式,值为0时选择两个位移线段之间以加速度连续的方式完成衔接,避免加速度突变;值为1时选择两个位移线段之间以速度连续的方式完成衔接,避免速度突变;值为2时不考虑两个线段之间的加速度和速度是否连续,每个线段都通过线性均分的方式来完成插值。
- 参数意义:
 - 0: 加速度连续方式过渡;
 - 1: 速度连续方式过渡;
 - 2: 直接过渡,线段之间线性均分。
- 适用的指令: INTERPOLATE。

参数	名称	范围	缺省值	单位
P307	厂家识别选择	0~2	1	

- 与不同厂家控制器连接时,修改此参数可以完成伺服驱动器的识别、站号设定以及参数的读写功能,具体站号设置参照P300。
- 参数意义:
 - 0:参数以及站号设定规则按厂家默认方式处理;
 - 1: 参数按照安川方式组织,适用新代系统,站号设定规则适用于新代系统;
 - 2: 系统保留。

5.2 DI 功能一览表

序号	符号	DI 功能	序号	符号	DI 功能
0	NULL	无功能	24	NULL	无功能
1	SON	伺服使能	25	NULL	无功能
2	ARST	报警清除	26	NULL	无功能
3	CCWL	正转驱动禁止	27	NULL	无功能
4	CWL	反转驱动禁止	28	NULL	无功能
15	EMG	紧急停机	29	NULL	无功能
17	GAIN	增益切换	30	NULL	无功能
22	PC	比例控制	37	NULL	无功能
23	NULL	无功能			

5.3 DO 功能一览表

序号	符号	DO 功能	序号	符号	DO 功能
0	OFF	一直无效	7	ATRQ	转矩到达
1	ON	一直有效	8	BRK	电磁制动器
2	RDY	伺服准备好	9	RUN	伺服运行中
3	ALM	报警	10	NEAR	定位接近
4	ZSP	零速	11	TRQL	转矩限制中
5	COIN	定位完成	12	SPL	速度限制中
6	ASP	速度到达	13	NULL	无功能

5.4 DI 功能详解

符号	功能		功能解释				
NULL	无功能	输入状态	对系统无任何影响。				
SON	伺服使能	1	OFF: 伺服驱动器不使能, 电机不通电流; ON: 伺服驱动器使能, 电机通电流。				
ARST	报警清除		,如果该报警允许清除,输入上升沿(OFF变 清除报警。注意只有部分报警允许清除。				
		OFF: 禁止正转(CCW)转动; ON: 允许正转(CCW)转动。 用于机械极限行程保护,功能受参数 P097 控制。注意 P097 缺省值是忽略本功能,若需要使用本功能,需要修改 P097。					
CCWL	正转驱动禁止	2	使用正转驱动禁止功能,必须接行程开关的常闭触点。				
			忽略正转驱动禁止功能,电机可向正方向运				
			行,本信号无作用,无需接入。				
		l					
			说明 工 <u>大</u> 源 动林 小 动松工 ,				
		l 	正转驱动禁止功能下,正向转矩限制为 0 正转驱动禁止功能下,禁止正向脉冲输入				
CWL	反转驱 动禁止	OFF: 禁」 用于机械 P097 缺省 改 P097。 0 1 2 3(缺省) 禁止模式: P042 0	上反转(CW)转动; ON: 允许反转(CW)转动。 极限行程保护,功能受参数 P097 控制。注意值是忽略本功能,若需要使用本功能,需要修 说明 使用反转驱动禁止功能,必须接行程开关的常闭触点。 忽略反转驱动禁止功能,电机可向反方向运行,本信号无作用,无需接入。				
	NULL SON ARST CCWL	NULL 无功能 SON 伺服使能 ARST 报警清除 CCWL 正转驱动禁止	NULL 无功能 输入状态器 SON 伺服使能 OFF: 伺服 ON: 伺服 有报警时 ON 瞬间) OFF: 禁」 ON: 允许 用于机械。 P097 缺省 改 P097。 OFF: 禁」 P097 CCWL 正转驱 动禁止 0 CWL 反转驱 动禁止 OFF: 禁」 用于机械。 P097 0 CWL 反转驱 动禁止 OFF: 禁」 用于机械。 P097。 CWL 反转驱 动禁止 0 CWL 反转驱 动禁止 1 CWL 反转驱 动禁止 1 CWL P097。 P097 0 1 2 3(缺省) 禁止上模式。 P042 P042 0				

序号	符号	功能	功能解释			
15	EMG	紧急停机	OFF: 允许伺服驱动器工作; ON: 依据 P164 参数所设定的方式使电机停止运行。			
17	GAIN	增益切换	当参数 P208=2 时,通过 GAIN 切换增益组合: OFF: 第 1 增益; ON: 第 2 增益。			
22	PC	比例控制	OFF: 速度环 PI 控制; ON: 速度环 P 控制。			

5.5 DO 功能详解

序号	符号	功能	功能解释
0	OFF	一直无效	强制输出 OFF。
1	ON	一直有效	强制输出 ON。
2	RDY	伺服准备好	OFF: 伺服主电源未合或有报警;
	KD1	同加以正田 刘	ON: 伺服主电源正常,无报警。
3	ALM	报警	OFF: 有报警; ON: 无报警。
4	ZSP	零速	OFF: 电机速度高于参数 P160(不分方向);
	251	y y	ON: 电机速度低于参数 P160(不分方向)。
		定位	位置控制时
5	COIN	完成	OFF: 位置偏差大于参数 P150;
		76/40	ON:位置偏差小于参数 P150。
			OFF: 电机速度低于参数 P154;
6	ASP	速度到达	ON: 电机速度高于参数 P154。
			具有极性设置功能,参考参数 P154 说明。
			OFF: 电机转矩低于参数 P157;
7	ATRQ	转矩到达	ON: 电机转矩高于参数 P157。
			具有极性设置功能,参考参数 P157 说明。
8	BRK	电磁制动器	OFF: 电磁制动器制动; ON: 电磁制动器释放。
			位置控制时
10	NEAR	定位接近	OFF: 位置偏差大于参数 P152;
			ON: 位置偏差小于参数 P152。
11	TRQL	转矩限制中	OFF: 电机转矩未达到限制值;
11	TRQL	747EPK市J宁	ON: 电机转矩达到限制值。
			转矩控制时
12	SPL	速度限制中	OFF: 电机速度未达到限制值;
12	SPL	还浸സ門甲	ON: 电机速度达到限制值。
			速度限制方法通过参数 P077 设置。

第6章 通讯功能

6.1 Mechatrolink-Ⅲ参数

参考5.1.4章节。

6.2 Mechatrolink-Ⅲ通信

当前的软件版本中,通信周期与传输周期的倍数关系请设为1,即 CONNECT 命令的 COM_TIME 字段设为1。

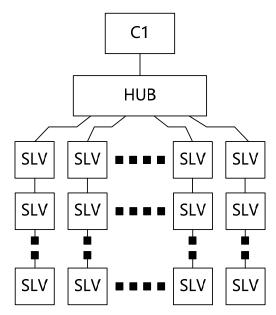
6.2.1 Mechatrolink-III网络连接

Mechatrolink-III系统的连接形式为1个C1主站最多可连接62个从站的网络系统,具有菊花链形连接和使用HUB(集线器)的星形连接2种连接方式。

在星形连接方式中,需要使用专用的 HUB 模块,每个 Mechatrolink-III网络系统中,最多可连接 1 个 C2 主站,最多可接入 2 级 HUB。

实际使用过程中,从站的连接站数依据通信条件设定(传输周期、传送字节数、拓扑以及电缆长度)来确定,系统的传输周期可通过 MECHATROLINK 协会网站公开的 "MECHATROLINK-III实用软件"(传输周期计算软件(免费软件))来计算。

1.菊花链形连接

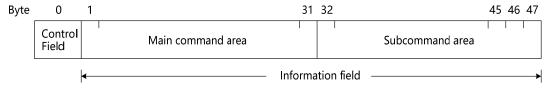


MECHATROLINK-皿的连接形式(菊花链形连接)

配线按照如下标准,站间距离是指相邻站之间电缆的长度。配线时,请保证站间距离大于 0.2m,小于 100m。

传输(us)	传输字节数(byte)			
	32	48		
125	5	4		
250	9	8		
500	15	15		
1000	24	23		
2000	37	36		
4000	56	55		
8000	62	62		

2.星形连接


配线按照如下标准,站间距离是指相邻站之间电缆的长度。配线时,请保证站间距离大于 0.2m,小于 100m。

传输(us)	传输字节数(byte)			
	32	48		
125	6	5		
250	12	11		
500	24	21		
1000	42	39		
2000	62	62		
4000	62	62		
8000	62	62		

6.2.2 Mechatrolink-III帧结构

Mechatrolink-III命令数据由一个主命令和一个从命令组成,也可以只是用其中的主命令部分,

如下所示:

描述	字节范围	Command	Response		
控制数据	0	0x03	0x03		
子	1	WDT	RWDT		
主命令数据	2~31	主命令内容			
子命令数据	32~47	子命令内容,有些主命令不需要是用子命令			

6.2.3 Mechatrolink-III通讯命令列表

在此列表中,仅列出当前所支持的命令,所支持的命令随后会逐步增加,请查阅官网最新版说明书内容。

1.命令术语描述

● Mechatrolink-III命令依据功能分为以下类别

处理分类	标号	说明			
网络命令	N	用于网络管理。建立连接,建立同步等。			
数据通信命令	D	用于数据交互。处理参数,变量,ID等			
控制命令	С	用于设备的状态控制。伺服 ON, OFF 等。			
运动命令	M	用于运动控制			

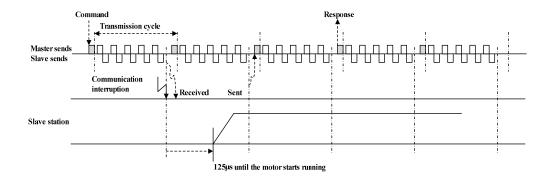
● Mechatrolink-III的命令包括同步型和非同步型两类

分类	标号	说明
同步型	S	在每个通信周期内执行命令的发出和响应的接收;相对于 发出的命令,在下一周期内接收命令的响应。在每个通信 周期内进行 WDT 值的更新和检查。
非同步型	A	与通信周期不同步地执行命令、响应的发送接收。不必在下一个通信周期内进行发出命令的接收。不进行 WDT 值的更新和检查。

2.主命令

命令码	命令名	描述	处理	同步	执行层
0x00	NOP	无效指令	N	A	P2、P3
0x03	ID_RD	ID 读命令	D	A	P2, P3
0x04	CONFIG	设备设置操作请求	C	A	P2, P3
0x05	ALM_RD	警报/警告读命令	D	A	P2、P3
0x06	ALM_CLR	警报/警告清除命令	C	A	P2, P3
0x0D	SYNC_SET	同步建立请求命令	N	A	P2、P3
0x0E	CONNECT[注 1]	连接建立请求命令	N	A	P1
0x0F	DISCONNECT	连接断开请求命令	N	A	P1、P2 P3、P4
0x23	SENS_ON	传感器 ON 命令	С	A	P2, P3
0x24	SENS_OFF	传感器 OFF 命令	C	A	P2, P3
0x30	SMON	伺服状态监视命令	D	A	P2, P3
0x31	SV_ON	伺服 ON 命令	C	A	P2、P3
0x32	SV_OFF	伺服 OFF 命令	C	A	P2、P3

命令码	命令名	描述	处理	同步	执行层
0x34	INTERPOLATE	插补进给命令	M	S	P3
0x40	SVPRM_RD	读伺服参数命令	D	A	P2, P3
0x41	SVPRM_WR	写伺服参数命令	D	A	P2, P3


注 1: 当前的软件版本中, 通信周期与传输周期的倍数关系请设为 1, 即 COM_TIME 字段设为 1。

3.子命令

命令码	命令名	描述	处理	同步	执行层
0x00	NOP	无效指令	N	A	P2, P3
0x05	ALM_RD	警报/警告读命令	D	A	P2, P3
0x06	ALM_CLR	警报/警告清除命令	C	A	P2, P3
0x30	SMON	伺服状态监视命令	D	A	P2, P3
0x40	SVPRM_RD	读伺服参数命令	D	A	P2, P3
0x41	SVPRM_WR	写伺服参数命令	D	A	P2, P3

6.2.4 Mechatrolink-III命令的执行

命令数据和监视数据的执行时间如下图所示:

6.2.5 Mechatrolink-III命令特定字段详解

1.WDT、RWDT

内容如下所示:

Watch Dog Timer 的检查于建立同步后实施。 另外,不论同步建立与否,均允许进行Watch Dog Timer的更新。

2.CMD_CTRL

CMD CTRL 的位分配如下:

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
CMD_ID		Reserve	Reserve	ALM_CLR	Reserve	Reserve	Reserve
bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	Reserve						

- ALM CLR: 警报、警告的清除,当前版本未使用此 Bit 位。
- CMD ID: 命令 ID, 当前版本未适用。

3.CMD_STAT

CMD CTRL 的位分配如下:

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
RCMD_ID		Reserve	Reserve	ALM_CLR_CMP	CMD_RDY	D_WAR	D_ALM
bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
COMM_ALM				CMD_ALM			

• D ALM:

- 1: 从站设备警报状态(发生产品规格所规定的警报时);
- 0: 其他状态(含属于产品规格规定的 COMM_ALM、CMD_ALM)。 从站设备发生 COMM_ALM、CMD_ALM 之外的设备固有的警报时,D_ALM 置 1。

• D WAR:

- 1: 从站设备警告状态(发生产品规格所规定的警告时);
- 0: 其他状态(含属于产品规格规定的 COMM_ALM、CMD_ALM)。 从站设备发生 COMM_ALM、CMD_ALM 之外的设备固有的警告时,D_WAR 置 1。

• CMDRDY:

- 1: 当前命令执行完成,可以接收新命令
- 0: 当前命令正在执行中。

CMDRDY=0 表示正在执行命令处理,期间,从站继续当前正在执行的命令处理,对于CMDRDY=0时的新命令,从站执行废弃处理。

- ALM CLR CMP:警报、警告的清除状态,当前版本未使用此 Bit 位。
- RCMD ID: 命令 ID 返回值,当前版本未适用。
- CMD_ALM:

通知命令故障状态,此故障状态为独立警报,即使 CMD_ALM 不为"0",从站设备所处的层也不变化。此外,伺服的 ON、OFF 状态也不变化。

错误代码	含义	说明	错误 发生层	错误发生后 转移目标层	ALM/ WARING
0x00	通信正常				
0x09	Out Of Range	超出数据范围	P1、P2 P3、P4	不转移	ALM
0x08	Command Not Support	与通信层不一致的 CMD 不满足 CMD 的执行条件	P2、P3	不转移	ALM

• COMM ALM:

通知通信故障状态,此故障状态为独立警报。

错误代码	含义	说明	错误 发生层	错误发生后 转移目标层	ALM/ WARING
0x00	通信正常				
0x0C	同步异常	WDT 未正常更新	Р3	P2	ALM

4. Device Code

Device Code	Value
Device Code	0∼3Byte
0x01	0x0001507
0x02	0x151A0008

5.SVCMD_CTRL

SVCMD CTRL 的位分配如下:

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	b	oit 1	bit 0	
Resei	ve(0)	ACC	FIL	STOP_	P_MODE CMD_CANCEL		CMD_PAUSE		
bit 15	bit 14	bit 13	bit 12	bit 1	bit 11		bit 9	bit 8	
	Reserve(0)		SEL2		LT_SEL1		LT_REQ		
bit 23	bit 22	bit 21	bit 20	bit :	19	bit 18	bit 17	bit 16	
	SEL_MON2				SEL_MON1				
bit 31	bit 30	bit 29	bit 28	bit 2	27	bit 26	bit 25	bit 24	
	Reserve(0)					SEL_	MON3		

- CMD_PAUSE: 移动命令暂停。
 - 0: 无意义;
 - 1: 暂停当前指令中的命令(POSING、FEED、EX_FEED、EX_POSING、ZRET、VELCTRL),减速度根据 STOP_MODE 要求,在减速停止时,按照各命令指定的最终 DECR 进行减速。
- CMD CANCEL: 移动命令中断。
 - 0: 无意义;
 - 1:中断当前指令中的命令(POSING、FEED、EX_FEED、EX_POSING、ZRET、VELCTRL),减速度根据 STOP_MODE 要求,在减速停止时,按照各命令指定的最终 DECR 进行减速。
- STOP_MODE: 停止模式选择,选择 CMD_PAUSE、CMD_CANCEL 时的停止模式。
 - 0: 减速停止;
 - 1: 急速停止。
- ACCFIL: 位置指令滤波器。
 - 0: 无位置指令滤波器;
 - 1: 指数函数位置滤波器;

- 2: 移动平均位置滤波器;
- 3: Reserve.
- LT REQ1: 闩锁请求 1, 通过 C 相或者外部输入信号的上升沿请求闩锁。
 - 0: 无意义;
 - 1: 闩锁请求。
- LT REQ2: 闩锁请求 2, 通过 C 相或者外部输入信号的上升沿请求闩锁。
 - 0: 无意义:
 - 1: 闩锁请求。
- LT SEL1: 闩锁信号选择 1。
 - 0: C相;
 - 1: 外部输入信号 HDI1;
 - 2: 外部输入信号 HDI2:
 - 3: Reserve.
- LT SEL2: 闩锁信号选择 2。
 - 0: C相;
 - 1: 外部输入信号 HDI1;
 - 2: 外部输入信号 HDI2;
 - 3: Reserve.
- SEL MON1: 监视选择 1,选择 MONITOR1 字段的监视信息。
- SEL MON2: 监视选择 2,选择 MONITOR2 字段的监视信息。
- SEL MON3: 监视选择 3,选择 MONITOR3 字段的监视信息。

6.SVCMD STAT

SVCMD STAT 的位分配如下:

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1				bit 0
Reserve(0)	Reserve(0)	ACC	CFIL	Rese	erve(0) CMD		CMD_CANCEL_CMP		CMD_PAUSE_C	
bit 15	bit 14	bit 13	3	bit 12	bit 11 bit 10 b		bit 9	bit 8		
Reserve(0)	Reserve(0)	sv_o	N I	M_RDY	PON POS		POS_RDY	L_CMP2		L_CMP1
bit 23	bit 22	bit 21	1	bit 20	bit 1	bit 19 bit 18		ŀ	oit 17	bit 16
	SEL_MON2						SEL_I	MON:	1	
bit 31	bit 30	bit 29	9	bit 28	bit 2'	7	bit 26	k	oit 25	bit 24
	Vendor Specfic						SEL_I	MON:	3	

- CMD PAUSE CMP: 移动命令暂停完毕。
 - 0: 移动命令暂停执行中;
 - 1: 移动命令暂停执行完毕。

判断 POSING、FEED、EX_FEED、EX_POSING、ZRET、VELCTRL 命令已经暂停完毕的状态。

● CMD CANCEL CMP: 移动命令中断完毕。

- 0:移动命令中断执行中;
- 1: 移动命令中断执行完毕。

判断 POSING、FEED、EX_FEED、EX_POSING、ZRET、VELCTRL 命令已经中断完毕的状态。

- ACCFIL: 执行中的位置指令滤波器状态。
 - 0: 无位置指令滤波器;
 - 1: 指数函数位置指令滤波器;
 - 2: 移动平均位置滤波器;
 - 3: Reserve.
- L CMP1: 闩锁完毕 1,对 LT REQ1 进行完毕确认的判断状态。
 - 0: 闩锁进行中;
 - 1: 闩锁完毕。
- L CMP2: 闩锁完毕 2, 对 LT REQ2 进行完毕确认的判断状态。
 - 0: 闩锁进行中;
 - 1: 闩锁完毕。
- POS RDY: 位置信息有效。
 - 0: 位置信息无效;
 - 1: 位置信息有效。

判断用作响应数据的监视信息的位置数据是否为有效状态。使用绝对是编码器时,SENS_ON 命令处理完毕之后,POS_RDY=1,SENS_OFF 命令处理完毕之后,POS_RDY=0;使用增量式编码器时,CONNECT 命令处理完毕之后,POS_RDY=1。

- PON: 主电源 ON,判断主电源是否已接通状态。
 - 0: 主电源 OFF;
 - 1: 主电源 ON。
- M RDY: 电机通电准备完毕,判断可否伺服 ON 状态。
 - 0: 电机通电准备未完成;
 - 1: 电机通电准备完成。
- SVON: 伺服 ON,判断电机是否已通电状态。
 - 0: 伺服 OFF;
 - 1: 伺服 ON。
- SEL MON1: 发回监视 1 数据,判断作为响应数据的监视信息的状态。
- SEL MON2: 发回监视 2 数据,判断作为响应数据的监视信息的状态。
- SEL MON3: 发回监视 3 数据,判断作为响应数据的监视信息的状态。

7.SVCMD_IO 伺服命令输出信号

SVCMD_IO_IN 的位分配如下:

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0		
N_CL	P_CL	P_PPI	V_PPI	Reserve(0)	Reserve(0)	Reserve(0)	Reserve(0)		
bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8		
	Reser	ve(0)		G-SEL					
bit 23	bit 22	bit 21	bit 20	bit 19	bit 18	bit 17	bit 16		
			Vender S	Specific I/O					
				•			·		
bit 31	bit 30	bit 29	bit 28	bit 27	bit 26	bit 25	bit 24		
	Vender Specific I/O								

- V_PPI: 速度环 P/PI 控制。
 - 0: PI 控制;
 - 1: P控制。
- P PPI: 位置环 P/PI 控制。
 - 0: PI 控制;
 - 1: P控制。
- P_CL: 正转侧转矩限制。
 - 0: 无转矩限制;
 - 1: 转矩限制。
- N_CL: 反转侧转矩限制。
 - 0: 无转矩限制;
 - 1:转矩限制。
- G_SEL: 增益切换。

暂时保留。

● VenderSpecific IO: 厂家自定义 IO 信号。 暂时保留。

8.SVCMD_IO 伺服命令输入信号

SVCMD_IO_OUT 的位分配如下:

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
ESTP	EXT3	EXT2	EXT1	N-OT	P-OT	DEC	Reserve(0)			
bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8			
ZPOINT	PSET	NEAR	DEN	N-SOT	P-SOT	BRK_ON	Reserve(0)			
bit 23	bit 22	bit 21	bit 20	bit 19	bit 18	bit 17	bit 16			
	Reserv	/e(0)		ZSPD	V_CMP	V_LIM	T_LIM			
bit 31	bit 30	bit 29	bit 28	bit 27	bit 26	bit 25	bit 24			
	Vender Specific I/O									

- DEC: 原点复归减速限位开关输入状态。
 - 0: OFF:
 - 1: ON.
- P_OT: 正转驱动禁止输入状态。
 - 0: OFF;
 - 1: ON.
- N OT: 反转驱动禁止输入状态。
 - 0: OFF;
 - 1: ON.
- EXT1: 第1外部闩锁输入状态。
 - 0: OFF;
 - 1: ON。
- EXT2: 第2外部闩锁输入状态。
 - 0: OFF;
 - 1: ON。
- ESTP: 紧急停止输入信号状态。
 - 0: OFF;
 - 1: ON。
- BRK ON: 制动器输出状态。
 - 0: 制动器解除中;
 - 1: 制动器运行中。
- P SOT: 正侧软限位状态。
 - 0: 正常状态中;
 - 1: 软极限限位中。
- N_SOT: 反侧软限位状态。
 - 0: 正常状态中;
 - 1: 软极限限位中。

- DEN: 位置控制模式输出完毕状态。
 - 0: 输出过程中;
 - 1:输出完毕。

判断伺服驱动发出的位置指令是否已经完成的状态,位置控制模式以外的模式处于不确定态。

- NEAR: 位置控制模式定位接近状态。
 - 0: 定位接近范围外;
 - 1: 定位接近范围内。

判断是否处于定位接近距离的范围内的状态,位置控制模式以外的模式处于不确定状态。

- PEST: 位置模式定位完成状态。
 - 0: 定位完成范围外;
 - 1: 定位完成范围内。

判断是否处于定位完成距离的范围内的状态,,位置控制模式以外的模式处于不确定状态。

- ZPOINT: 原点位置。
 - 0: 原点位置范围外;
 - 1: 原点位置范围内。

判断是否处于原点位置检出幅度的范围内的状态。

- T LIM: 转矩限制。
 - 0: 非转矩限制中。
 - 1: 转矩限制中。

判断正转转矩限制值或者反转转矩限制值是否受限的状态。

- V LIM: 转矩控制模式速度限制。
 - 0: 未检测出速度限制;
 - 1: 检测出速度限制。

判断命令所指定的速度限制是否受限的状态,转矩控制模式以外的模式处于不确定状态。

- V CMP: 速度控制模式速度一直状态。
 - 0: 速度不一致;
 - 1: 速度一致。

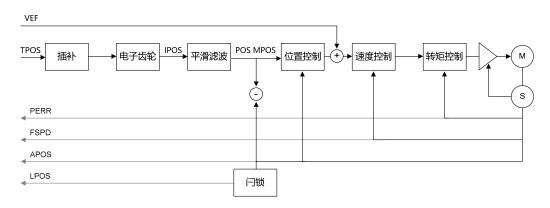
判断是否在速度一致信号检出幅度的状态,速度控制模式以外的模式处于不确定状态。

- ZSPD: 速度控制模式零速度状态。
 - 0: 未检出零速度;
 - 1: 检出零速度。

判断当前速度是否处于零速检出幅度的状态。

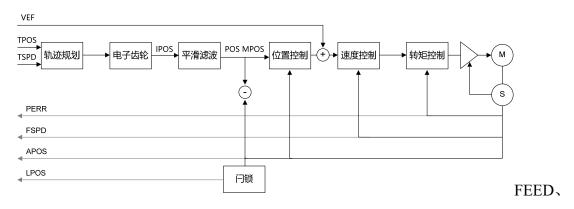
● VenderSpecific IO: 厂家自定义 IO 信号。 暂时保留。

6.3 位置信息

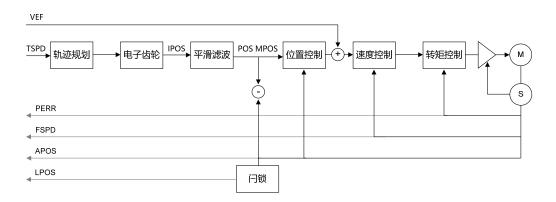

有关位置指令分辨率及电子齿轮的设置请参考参数 P027、P028 的说明以及 4.2.2 章节。

6.4 Mechatrolink-III运行模式

6.4.1 位置模式

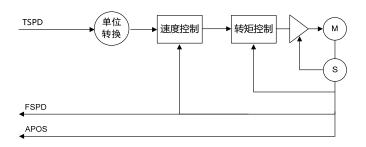

1.插补功能位置模式

INTERPOLATE 命令适用如下框图,带插补功能位置模式。

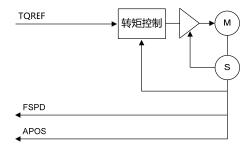


2.轨迹规划功能位置模式

POSING 命令适用如下框图,带轨迹规划功能位置模式。



ZRET 命令适用如下框图,带轨迹规划功能位置模式。


6.4.2 速度模式

VELCTRL 命令适用如下框图,运行速度模式。

6.4.3 转矩模式

TRQCTRL 命令适用如下框图,运行转矩模式。

6.4.4 闩锁

目前暂不支持有闩锁功能的命令,主要包括 EX_FEED、EX_POSING、ZRET。

第7章 报警

7.1 报警原因和处理

本使用手册中"☆"表示配绝对值编码器特有功能,"★"表示配增量式编码器特有功能。

Err1(超速)

原因	检查	处理
电机接线 U、V、W 相序	│ │检查 U、V、W 接线	正确连接 U、V、W 接线,与驱动
错误	恒旦 U、V、W 按线	器插头的 U、V、W 标号一一对应
电机速度超调	 检查运行状态,查看参数	调整伺服增益,使其减小超调;速
电机速浸起调	位旦运行状态,旦有多数 	度控制时,可增大加减速时间
编码器接线错误	检查编码器接线	正确接线

Err2(主电路过压)

原因	检查	处理
输入交流电源过高	检查电源电压	使电压符合产品规格
再生制动故障	再生制动电阻、制动管是否失 效或接线断开	维修
再生制动能量过大	查看制动负载率	 降低起停频率 增加加减速时间 减小转矩限制值 减小负载惯量 更换更大功率驱动器和电机 更换更大制动电阻

Err4(位置超差)

原因	检查	处理
电机接线 U、V、W 相序 错误	检查 U、V、W 接线	正确连接电机 U、V、W 接线,与 驱动器插头的 U、V、W 标号—— 对应
编码器零点变动	检查编码器零点	重新将编码器调零
电机卡死	检查电机及机械连接部分	维修
指令脉冲频率太高	检查输入频率、脉冲分倍频参 数	● 降低输入频率● 调整脉冲分倍频参数
位置环增益太小	检查参数 P009	增加位置环增益
超差检测范围太小	检查参数 P080	增加参数 P080 数值
转矩不足	查看转矩	增加转矩限制值增加位置指令平滑滤波时间减小负载更换更大功率驱动器和电机

Err7(驱动禁止异常)

原因	检查	处理
伺服使能时 CCWL、CWL 驱动禁止输入都无效	检查 CCWL、CWL 接线	● 正确输入 CCWL、CWL 信号● 若不使用 CCWL、CWL 信号, 可设置参数 P097 屏蔽

Err8(位置偏差计数器溢出)

原因	检查	处理
电机卡死	检查电机及机械连接部分	检修
指令脉冲异常	检查脉冲指令	

Err11(功率模块过电流)

原因	检查	处理
电机接线 U、V、W 之间 短路	检查 U、V、W 接线	正确连接 U、V、W 接线
电机绕组绝缘损坏	检查电机	更换电机
驱动器损坏	检查驱动器	电机无问题,再次上电还是报警,可能是驱动器损坏
接地不良	检查接地线	正确接地
受到干扰	检查干扰源	增加线路滤波器,远离干扰源

Err12(过电流)

原因	检查	处理
电机接线 U、V、W 之间 短路	检查 U、V、W 接线	正确连接 U、V、W 接线
电机绕组绝缘损坏	检查电机	更换电机
驱动器损坏	检查驱动器	电机无问题,再次上电还是报警,可能是驱动器损坏

Err13(过负载)

原因	检查	处理
超过额定负载连续运行	查看负载率	降低负载或换更大功率驱动器
系统不稳定	检查电机运行是否振荡	降低系统增益
加减速太快	检查电机运行是否平顺	加大加减速时间
编码器零点变动	检查编码器零点	重新安装编码器并调零

Err14(制动峰值功率过载)

原因	检查	处理
输入交流电源偏高	检查电源电压	使电压符合产品规格
再生制动故障	再生制动电阻、制动管是否失 效或接线断开	维修
再生制动能量过大	查看制动负载率	● 降低起停频率● 增加加减速时间● 更换更大功率驱动器和电机● 更换更大制动电阻
接线错误	B1、B2 是否未短接 检查驱动器型号,是否需要连 接外接制动电阻使用	● 将 B1、B2 短接 ● 连接外接制动电阻使用

Err16(电机热过载)

原因	检查	处理
超过额定负载长时间运行	查看负载率和电机温升	降低负载或换更大功率驱动器
编码器零点变动	检查编码器零点	重新安装编码器并调零

Err17(制动平均功率过载)

原因	检查	处理
输入交流电源偏高	检查电源电压	使电压符合产品规格
再生制动能量过大	查看制动负载率	 降低起停频率 增加加减速时间 减小转矩限制值 减小负载惯量 更换更大功率驱动器和电机 更换更大制动电阻

Err18(功率模块过载)

原因	检查	处理
超过额定负载长时间运行	查看电流	降低负载或换更大功率驱动器
编码器零点变动	检查编码器零点	重新安装编码器并调零

Err20(EEPROM 错误)

原因	检查	处理
EEPROM 芯片损坏	重新上电检查	故障不消失,请更换驱动器

Err21(逻辑电路出错)

原因	检查	处理
控制电路故障	重新上电检查	故障不消失, 请更换驱动器

Err23(AD 转换错误)

原因	检查	处理
电流传感器及接插件问题	查看主电路	故障不消失,请更换驱动器
AD 转换器和模拟放大电路问题	检查控制电路	故障不消失,请更换驱动器

Err27(缺相报警)

原因	检查	处理
动力电源缺相	检查 L1, L2, L3 接线	正确接线
动力电源欠压	检查供电电压	确保正确的电压输入
缺相检查回路故障	检查光耦,重新上电	故障不消失, 请更换驱动器

Err29(转矩过载报警)

原因	检查	处理
意外大负载发生	检查负载情况	调整负载
参数 P070、P071、P072 设置不合理	检查参数	调整参数

Err30(编码器 Z 信号丢失)★

原因	检查	处理
编码器问题	查看编码器 Z 信号	更换编码器
编码器电缆和接插件问题	检查电缆和接插件	更换电缆和接插件

Err31(编码器 UVW 信号错误)★

原因	检查	处理
编码器问题	◆ 线数和极数不对◆ 编码器 UVW 信号错误◆ 编码器损坏	更换编码器

Err32(编码器 UVW 信号非法编码)★

原因	检查	处理
编码器问题	检查编码器 UVW 信号	更换编码器

Err35(板间连接故障)

原因	检查	处理
板间连接的排线故障	检查排线及其端子	故障不消失,请更换驱动器
连接通路故障	检查光耦	故障不消失,请更换驱动器

Err36(风扇故障)

原因	检查	处理
散热风扇故障	检查风扇	更换风扇
风扇检测回路故障	检查接线	正确接线
风扇检测回路故障	检查光耦	故障不消失, 请更换驱动器

Err40(编码器通讯错误)

原因	检查	处理
编码器接线错误	检查编码器接线	正确接线
编码器电缆和接插件不良	检查电缆和接插件	更换电缆和接插件
编码器损坏	检查编码器	更换编码器

Err42(编码器内部计数错)

原因	检查	处理
编码器电缆和接插件不良	检查电缆和接插件	更换电缆和接插件
编码器损坏	检查编码器	更换编码器

Err43(编码器通讯应答错)

原因	检查	处理
编码器电缆和接插件不良	检查电缆和接插件	更换电缆和接插件
编码器损坏	检查编码器	更换编码器

Err44(编码器校验错)

原因	检查	处理
编码器电缆和接插件不良	检查电缆和接插件	更换电缆和接插件
编码器损坏	检查编码器	更换编码器

Err45(编码器 EEPROM 错误)

原因	检查	处理
编码器电缆和接插件不良	检查电缆和接插件	更换电缆和接插件
编码器 EEPROM 损坏	检查编码器	更换编码器

Err46(编码器参数错误)

原因	检查	处理
编码器电缆和接插件不良	检查电缆和接插件	更换电缆和接插件
编码器 EEPROM 损坏	检查编码器	更换编码器

Err47(绝对值编码器外接电池故障)☆

原因	检查	处理
外部电池没电	外部电池电压	更换电池
更换电池后第一次上电	电池电压	若电压正常,请重启编码器,参考 3.6.1 节

Err48(绝对值编码器外接电池报警)☆

原因	检查	处理
外部电池没电	外部电池电压	更换电池
更换电池后第一次上电	电池电压	若电压正常,请重启编码器,参考 3.6.1 节

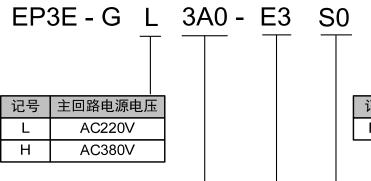
Err50(电机参数与驱动器不匹配)

原因	检查	处理
电机和驱动的功率不匹配	核对驱动器的电机适配表	更换合适的驱动或电机

Err60(通信中断)

原因	检查	处理
通信中断	● 检查以太网线缆	● 更换以太网线缆
地行中断 	● 检查主站状态	● 检查主机状态

Err63(内部错误)


原因	检查	处理
内部错误 1	伺服固件是否为测试版本或 者不兼容版本	进行固件升级操作,刷新伺服固件

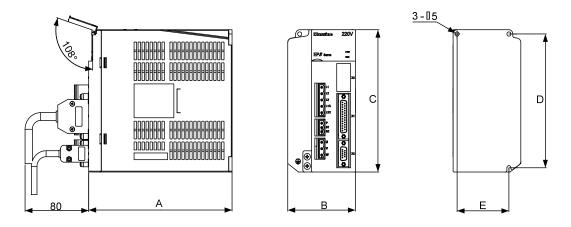
Err70(通信接口初始化错误)

原因	检查	处理
通信接口初始化错误	硬件故障	更换驱动器

第8章 规格

8.1 驱动器型号

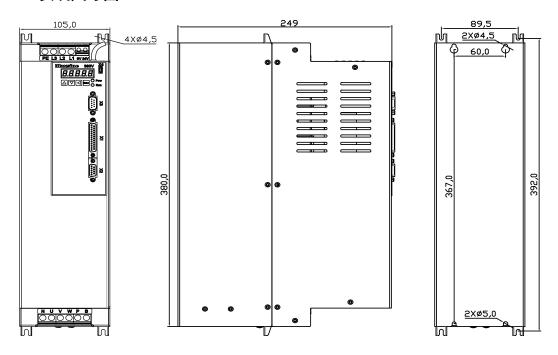
记号	功率(kW)	电流(A)
GL1A0	0.1	1.0
GL1A8	0.2	1.8
GL3A0	0.5	3.0
GL5A5	1.0	5.0
GL7A5	1.5	7.5
GL120	2.0	11.5
GL160	2.5	15.5
GL190	3.5	19.0
GL240	5.5	24.0
GH2A0	0.6	2.0
GH3A5	1.0	3.5
GH5A4	1.5	5.4
GH8A5	2.0	8.5
GH130	3.0	13.0
GH170	5.0	17.0
GH210	7.5	21.0
GH260	9.0	25.5
GH320	11.0	32.0
GH390	15.0	39.0

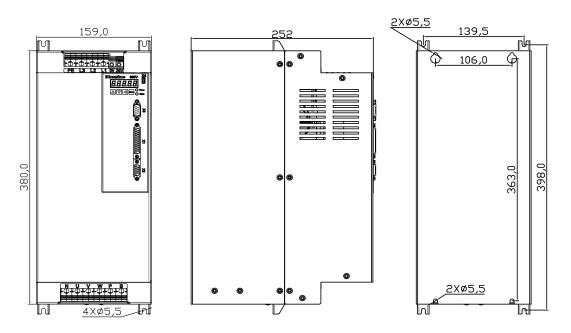

记号	通讯协议
M3	Mechatrolink Ⅲ

记号	控制方式			
S0	标准IO输入			
S3	标准24V单端信号输入			

M3

记号	编码器接口规格				
В0	23bit 增量式编码器				
E3	23bit 多圈绝对值编码器				


8.2 驱动器尺寸

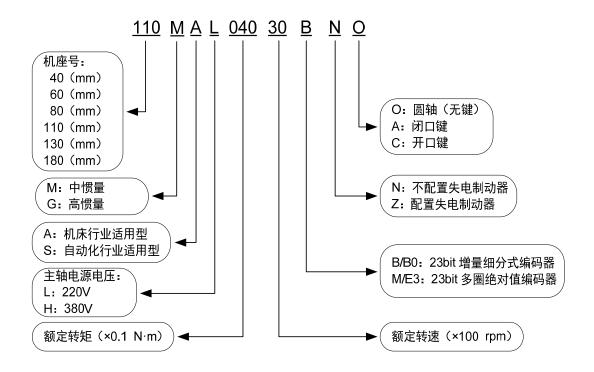

型号 尺寸 (mm)	GL1A0	GL1A8/GL3A0	GL5A5	GL7A5	GL120	GL160	GL190	GL240
A	150	150	180	180	180	180	180	210
В	55	65	75	85	95	95	105	115
C	168	168	168	168	168	200	220	250
D	158	158	158	158	158	189	209	239
E	-	55	65	65	65	84	94	104

型号 尺寸 (mm)	GH2A0/GH3A5/GH5A4	GH8A5	GH130	GH170/GH210
A	180	180	180	210
В	95	95	105	115
C	168	200	220	250
D	158	189	209	239
E	65	84	94	104

GH260 安装尺寸图

GH320、GH390 安装尺寸图

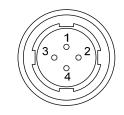
8.3 驱动器规格


	TH []	GL	GL	GL	GL	GL	GL	GL	GL	GL	GH	GH	GH	GH	GH	GH	GH	GH	GH	GH
	型号	1A0	1A8	3A0	5A5	7A5	120	160	190	240	2A0	3A5	5A4	8A5	130	170	210	260	320	390
额知	定输出功率 (kW)	0.1	0.2	0.5	1.0	1.5	2.0	2.5	3.5	5.5	0.6	1.0	1.5	2.0	3.0	5.0	7.5	9.0	11.0	15.0
额知	定输出电流 (A)	1.0	1.8	3.0	5.0	7.5	11.5	15.5	19.0	24.0	2.0	3.5	5.4	8.5	13.0	17.0	21.0	25.5	32.0	39.0
	最大输出电 流(A)	3.0	5.4	9.0	11.3	14.9	21.0	24.5	28.5	40.0	6.0	7.1	10.0	12.7	28.3	31.2	39.6	44.0	55.0	78.0
输		单木	目 2201	/AC			三相 2	20VAC	:											
λ	主电源	-15	%∼+1	0%			-15%~	~+10%	,				三相	380VA	C -159	%∼+1	0% 50	/60Hz		
电		5	0/60H	Z			50/6	0Hz												
源	控制电源	单相2	220VA	C-15%	~+10	% 50/6	0Hz				24VD	C±15%	6不小−	于 1.5 <i>A</i>	1					
环	温度	工作:	0℃~	-40℃∫	贮存:·	-40℃	~50°C													
境	湿度	工作:	40%	~80%	(无结	露)则	△存: 9	93%以	下(无	:结露)										
児	大气压强	86kPa~106kPa																		
ß	方护等级	IP20																		
ŧ	空制方式	矢量控	空制																	
Ī	再生制动	外置	内置/	可外置						外置	内置/ī	可外置	!			外置				
Б	反馈方式	标配 2	23 位增	曾量式/	多圈绝	対値約	扁码器	,可选	配其作	也规格										
扌	空制模式	位置、	速度	、转矩																
娄	数字输入	5 个可	「编程報	俞入端	子(光	电隔隔	等),2	路高速	恵光耦4	輸入										
娄	数字输出	5 个可	「编程報	俞出端·	子(光	电隔隔	哥)													
#	寺别功能	机械设	者振陷:	波器、	振动扣	制														
ij	监视功能	转速、	当前	位置、	位置係	差、	电机转	矩、申	机电流	流、指	令脉冲	中频率	等							
1	呆护功能	超速、	过压	、过流	、过载	戈、制	动异常	、编码	3器异	常、位	置超差									
det:	速度频 率响应	1.2kH	1.2kHz																	
特性	速度波动率	<±0.0	<±0.03% (负载 0~100%); <±0.02% (电源-15%~+10%)																	
	调速比	1:5000)																	

8.4 驱动器的电机适配表

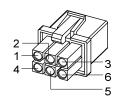
电机	型号(220V 系列)	转矩 N·m	转速 r/min	功率 kW
	40MSL00330	0.32	3000	0.10
	60MSL00630	0.64	3000	0.20
	60MSL01330	1.27	3000	0.40
	80MSL01330	1.27	3000	0.40
	80MSL02430	2.39	3000	0.75
>	80MSL03230	3.18	3000	1.00
MSL	130MSL04025	4.00	2500	1.00
系列	130MSL04820	4.77	2000	1.00
列	130MSL05025	5.00	2500	1.30
	130MSL07220	7.16	2000	1.50
	130MSL09620	9.55	2000	2.00
	130MSL10025	10.00	2500	2.60
	130MSL14320	14.30	2000	3.00
	110MAL04030	4.00	3000	1.26
	110MAL06030	6.00	3000	1.88
MAL	130MAL06025	6.00	2500	1.57
L	130MAL07725	7.70	2500	2.02
系列	130MAL10015	10.00	1500	1.57
	130MAL15015	15.00	1500	2.36
	110GSL04030	4.00	3000	1.26
G	110GSL06025	6.00	2500	1.57
GSL	130GSL05415	5.39	1500	0.85
系列	130GSL08315	8.34	1500	1.30
1	130GSL11515	11.50	1500	1.80
	130GSL15015	15.0	1500	2.36
	110GAL04020	4.00	2000	0.84
	110GAL06020	6.00	2000	1.26
GAL	130GAL05415	5.39	1500	0.85
7M	130GAL08315	8.34	1500	1.30
系列	130GAL11515	11.50	1500	1.80
	130GAL15010	15.00	1000	1.57
	130GAL15015	15.00	1500	2.36

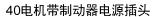
电机	型号(380V 系列)	转矩 N·m	转速 r/min	功率 kW
	110MAH04030	4.00	3000	1.26
	110MAH06030	6.00	3000	1.88
	130MAH04025	4.00	2500	1.00
	130MAH04820	4.77	2000	1.00
	130MAH05025	5.00	2500	1.30
\leq	130MAH06025	6.00	2500	1.57
MAH	130MAH07725	7.70	2500	2.02
[系列	130MAH10015	10.00	1500	1.57
列	130MAH15015	15.00	1500	2.36
	180MAH19015	19.00	1500	3.00
	180MAH27015	27.00	1500	4.30
	180MAH35015	35.00	1500	5.50
	180MAH48015	48.00	1500	7.50
	130GAH05415	5.39	1500	0.85
G	130GAH08315	8.34	1500	1.30
GAH	130GAH10025	10.00	2500	2.62
ИÉ	130GAH11515	11.50	1500	1.80
<i>Ā</i>]	130GAH15015	15.00	1500	6.60

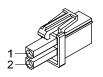

8.5 伺服电机型号

8.6 伺服电机接线

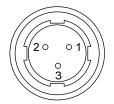
8.6.1 绕组接线




40/60/80电机电源插头

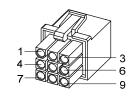

110/130/180电机电源插头

端子符号	端子	端子说明		
	40/60/80电机			
U	1	2	电机U相电源输入	
V	2	3	电机V相电源输入	
W	3	4	电机W相电源输入	
(4	1	电机外壳接地端子	

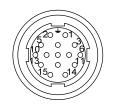

8.6.2 制动器

60/80电机制动器插头

110/130/180电机制动器插头


40 电机带制动器电源接线:

端子符号	端子序号	端子说明
U	1	电机U相电源输入
V	2	电机V相电源输入
W	3	电机W相电源输入
PE	4	接地端子
BK+	5	生性品質
BK-	6	制动器端子


60、80、110、130、180 电机制动器接线:

端子符号	流	端子说明	
-	60/80系列电机		
DC+	1	1	制动器电源为
DC-	2	2	直流电源无极
PE	——	3	性接入要求

8.6.3 编码器

40/60/80电机编码器插头

110/130/180电机编码器插头

40、60、80、110、130、180 电机编码器接线:

	10 00 00 110 150 100 Lybhin 1 Hijs 20.								
		端子序号							
端子符号	40电机	60/80	0电机	110/130/	′180电机	端子说明			
	绝对值	绝对值	增量式	绝对值	增量式				
SD+	1	1	1	6	6	编码器信号线			
SD-	2	2	2	7	7	細阳矿恒与线			
MA+	4	4	4	8	8	时钟输出			
MA-	5	5	5	9	9	时状机门			
VCC	6	6	6	2	2	编码器			
GND	7	7	7	3	3	5V电源输入			
电池+ ☆	3	3		4		3.6V电池供电			
电池- ☆	8	8		5		3.0 V 电他供电			
PE	9	9	9	1	1	接地端子			

注:本使用手册中"☆"表示配绝对值编码器特有功能, "★"表示配增量式编码器特有功能。

附录 A 新代系统串列参数读写

在新代系统串列参数中,第三方伺服驱动器参数是按照安川伺服驱动器的参数格式及参数单位来组织的。在串列参数操作的过程中,对应参数之间存在一定的转换关系,现将机器调试过程中常用参数之间的转换关系描述如下,其他参数暂时未使用。

A.1 速度回路增益 Pn100

参数对应关系, Pn100 = P005 * 10:

安川伺服 Pn100 速度回路增益 10~20000 400 0.1Hz 迈信伺服 P005 第一速度环增益 1~3000 40 Hz

1.系统读取操作, 伺服参数的值乘 10, 然后显示在串列参数中:

- 伺服面板显示: 55; 串列参数显示: 550。
- 伺服面板显示: 2001; 系统显示"输入值超过范围"。 在读取过程中,如果当前参数为 2001,实际对应安川参数为 20010,此参数超出 了安川伺服驱动器参数范围。

2.系统写入操作, 伺服参数的设置值乘 10, 然后修改到串列参数中:

- 如果要修改伺服参数为55,需要修改串列参数为550。
- 串列参数修改: 450; 伺服面板显示: 45。
- 串列参数修改: 455; 伺服面板显示: 45。

在写入过程中,如果当前参数设为 455,实际与伺服对应的参数是 45.5,在伺服处理的过程中为了与伺服参数单位对应,实际写入 45。

A.2 速度回路积分时间常数 Pn101

参数对应关系, Pn101 = P006 * 100:

安川伺服 Pn101 速度回路积分时间常数 $15\sim51200$ 2000 0.01ms 迈信伺服 P006 第一速度环积分时间常数 $1.0\sim1000.0$ 10 ms

1.系统读取操作, 伺服参数的值乘 100, 然后显示在串列参数中:

- 伺服面板显示: 15.5; 串列参数显示: 1550。
- 伺服面板显示: 1.0; 串列参数显示: 100。

在此种情况下, 伺服侧的设置值不能与安川伺服参数的最小值 15 对应。

● 伺服面板显示: 512.5; 系统显示"输入值超过范围"。

在读取过程中,如果当前参数为 512.50,实际对应安川参数为 51250,此参数超出了安川伺服驱动器参数范围。

2.系统写入操作, 伺服参数的设置值乘 100, 然后修改到串列参数中:

- 如果要修改伺服参数为 20.8, 需要修改串列参数为 2080。
- 串列参数修改: 2050; 伺服面板显示: 20.5。
- 串列参数修改: 2055; 伺服面板显示: 20.5。

在写入过程中,如果当前参数设为 2055,实际与伺服对应的参数是 20.55,在伺服处理的过程中,为了与伺服参数单位对应,实际写入 20.5。

● 串列参数修改:95;伺服参数无变化。

在写入过程中,如果当前参数设为95,实际与伺服对应的参数是0.95,此参数超出伺服驱动器参数范围。

A.3 位置回路增益 Pn102

参数对应关系, Pn102 = P009 * 10:

安川伺服 Pn102 位置回路增益 $10\sim20000$ 400 0.1/s 迈信伺服 P009 第一位置环增益 $1\sim1000$ 40 1/s

1.系统读取操作, 伺服参数的值乘 10, 然后显示在串列参数中:

- 伺服面板显示: 45; 串列参数显示: 450。
- 伺服面板显示: 1000: 串列参数显示: 10000。

在此种情况下, 伺服侧的设置值不能与安川伺服参数的最大值 20000 对应。

2.系统写入操作,伺服参数的设置值乘 10, 然后修改到串列参数中:

- 如果要修改伺服参数为55,需要修改串列参数为550。
- 串列参数修改: 500; 伺服面板显示: 50。
- 串列参数修改:505;伺服面板显示:50。

在写入过程中,如果当前参数设为505,实际与伺服对应的参数是50.5,在伺服处理的过程中,为了与伺服参数单位对应,实际写入50。

● 串列参数修改: 10001; 伺服参数无变化。

在写入过程中,如果当前参数设为10001,实际与伺服对应的参数是1000.1,此 参数超出伺服驱动器参数范围。

A.4 转动惯量比 Pn103

参数对应关系 Pn103 = P017 * 100:

安川伺服 Pn103 转动惯量比 $0\sim20000$ 100 1% 迈信伺服 P017 负载转动惯量比 $0.0\sim200.0$ 1.0 1

1.系统读取操作,伺服参数的值乘 100, 然后显示在串列参数中:

● 伺服面板显示: 3.5; 串列参数显示: 350。

2.系统写入操作, 伺服参数的设置值乘 100, 然后修改到串列参数中:

- 如果要修改伺服参数为 4.5, 需要修改串列参数为 450。
- 串列参数修改: 550; 伺服面板显示: 5.5。
- 串列参数修改: 555; 伺服面板显示: 5.5。

在写入过程中,如果当前参数设为 555,实际与伺服对应的参数是 5.55,在伺服处理的过程中,为了与伺服参数单位对应,实际写入 5.5。

A.5 第 1 段 Notch filter 频率 Pn409

参数对应关系, Pn409 = P200:

安川伺服 Pn409 第 1 段 Notch filter 频率 50~5000 5000 1Hz 迈信伺服 P200 第 1 共振陷波器频率 50~5000 5000 1Hz

1.系统读取操作, 伺服参数直接在串列参数中显示:

- 伺服面板显示: 1000; 串列参数显示: 1000。
- 伺服面板显示: 1500; 串列参数显示: 1500。

在此种情况下,伺服侧的设置值不能与安川伺服参数的最大值5000对应。

2.系统写入操作,按照伺服参数的设置值,直接修改串列参数:

- 如果要修改伺服参数为 1000,直接修改串列参数为 1000。
- 串列参数修改: 1200; 伺服面板显示: 1200。
- 串列参数修改: 2000; 伺服参数无变化。

在写入过程中,如果当前参数设为 2000,实际与伺服对应的参数是 2000,此参数超出伺服驱动器参数范围。

A.6 第 2 段 Notch filter 频率 Pn40C

参数对应关系, Pn40C = P203:

安川伺服Pn40C第 2 段 Notch filter 频率50~500050001Hz迈信伺服P203第 2 共振陷波器频率50~500050001Hz

1.系统读取操作, 伺服参数直接在串列参数中显示:

- 伺服面板显示: 1000; 串列参数显示: 1000。
- 伺服面板显示: 1500; 串列参数显示: 1500。

在此种情况下,伺服侧的设置值不能与安川伺服参数的最大值 5000 对应。

2.系统写入操作,按照伺服参数的设置值,直接修改串列参数:

- 如果要修改伺服参数为1000,直接修改串列参数为1000。
- 串列参数修改: 1200; 伺服面板显示: 1200。
- 串列参数修改: 2000; 伺服参数无变化。

在写入过程中,如果当前参数设为 2000,实际与伺服对应的参数是 2000,此参数超出伺服驱动器参数范围。

A.7 刹车指令-伺服 OFF 延迟时间 Pn506

参数对应关系, Pn506 = P166 / 10:

安川伺服 Pn506 刹车指令-伺服 OFF 延迟时间 $0\sim50$ 0 10ms 迈信伺服 P166 电机静止时电磁制动器延时时间 $0\sim2000$ 150 ms

1.系统读取操作, 伺服参数的值除 10, 然后显示在串列参数中:

- 伺服面板显示: 100; 串列参数显示: 10。
- 伺服面板显示: 105; 串列参数显示: 10。

在读取过程中,如果当前参数设为 105,实际对应安川参数是 10.5,为了与安川伺服 参数单位对应,实际读取 10。

● 伺服面板显示: 510; 系统显示"输入值超过范围"。

在读取过程中,如果当前参数为510,实际对应安川参数为51,此参数超出了安川伺服驱动器参数范围。

2.系统写入操作, 伺服参数的设置值除 10, 然后修改到串列参数中:

- 如果要修改伺服参数为300,需要修改串列参数为20。
- 串列参数修改: 20; 伺服面板显示: 200。

版本履历

版本号	发布时间	变更内容
第5版	2019年6月	
第6版	2019年9月	
第7版	2020年7月	
第8版	2021年9月	
第9版	2025年10月	

武汉迈信电气技术有限公司

地址: 武汉市东湖新技术开发区武大科技园武大园路 7 号航域 A6 栋

邮政编号: 430223

公司总机: 400-894-1018

销售热线: 400-894-1018-857/804

销售传真: 027-87921290

售后服务: 400-894-1018-831/832 公司网址: www.maxsine.com

> 2025 年 10 月编制 严禁转载·复制